Kernel: Optimize SlabAllocator to be lock-free

This commit is contained in:
Tom 2020-08-24 21:32:55 -06:00 committed by Andreas Kling
parent 81780e607d
commit c2b9f8857c

View file

@ -45,67 +45,82 @@ public:
m_base = kmalloc_eternal(size);
m_end = (u8*)m_base + size;
FreeSlab* slabs = (FreeSlab*)m_base;
size_t slab_count = size / templated_slab_size;
for (size_t i = 1; i < slab_count; ++i) {
m_slab_count = size / templated_slab_size;
for (size_t i = 1; i < m_slab_count; ++i) {
slabs[i].next = &slabs[i - 1];
}
slabs[0].next = nullptr;
m_freelist = &slabs[slab_count - 1];
m_freelist = &slabs[m_slab_count - 1];
m_num_allocated.store(0, AK::MemoryOrder::memory_order_release);
m_num_free.store(slab_count, AK::MemoryOrder::memory_order_release);
}
constexpr size_t slab_size() const { return templated_slab_size; }
size_t slab_count() const { return m_slab_count; }
void* alloc()
{
ScopedSpinLock lock(m_lock);
if (!m_freelist)
return kmalloc(slab_size());
ASSERT(m_freelist);
void* ptr = m_freelist;
m_freelist = m_freelist->next;
m_num_allocated.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
m_num_free.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
FreeSlab* free_slab;
{
// We want to avoid being swapped out in the middle of this
ScopedCritical critical;
FreeSlab* next_free;
free_slab = m_freelist.load(AK::memory_order_consume);
do {
if (!free_slab)
return kmalloc(slab_size());
// It's possible another processor is doing the same thing at
// the same time, so next_free *can* be a bogus pointer. However,
// in that case compare_exchange_strong would fail and we would
// try again.
next_free = free_slab->next;
} while (!m_freelist.compare_exchange_strong(free_slab, next_free, AK::memory_order_acq_rel));
m_num_allocated.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
#ifdef SANITIZE_SLABS
memset(ptr, SLAB_ALLOC_SCRUB_BYTE, slab_size());
memset(free_slab, SLAB_ALLOC_SCRUB_BYTE, slab_size());
#endif
return ptr;
return free_slab;
}
void dealloc(void* ptr)
{
ScopedSpinLock lock(m_lock);
ASSERT(ptr);
if (ptr < m_base || ptr >= m_end) {
kfree(ptr);
return;
}
((FreeSlab*)ptr)->next = m_freelist;
FreeSlab* free_slab = (FreeSlab*)ptr;
#ifdef SANITIZE_SLABS
if (slab_size() > sizeof(FreeSlab*))
memset(((FreeSlab*)ptr)->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
memset(free_slab->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
#endif
m_freelist = (FreeSlab*)ptr;
// We want to avoid being swapped out in the middle of this
ScopedCritical critical;
FreeSlab* next_free = m_freelist.load(AK::memory_order_consume);
do {
free_slab->next = next_free;
} while (!m_freelist.compare_exchange_strong(next_free, free_slab, AK::memory_order_acq_rel));
m_num_allocated.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
m_num_free.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
size_t num_allocated() const { return m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
size_t num_free() const { return m_num_free.load(AK::MemoryOrder::memory_order_consume); }
size_t num_free() const { return m_slab_count - m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
private:
struct FreeSlab {
FreeSlab* next { nullptr };
FreeSlab* next;
char padding[templated_slab_size - sizeof(FreeSlab*)];
};
FreeSlab* m_freelist { nullptr };
Atomic<size_t> m_num_allocated;
Atomic<size_t> m_num_free;
Atomic<FreeSlab*> m_freelist { nullptr };
Atomic<ssize_t> m_num_allocated;
size_t m_slab_count;
void* m_base { nullptr };
void* m_end { nullptr };
SpinLock<u32> m_lock;
static_assert(sizeof(FreeSlab) == templated_slab_size);
};
@ -163,7 +178,9 @@ void slab_dealloc(void* ptr, size_t slab_size)
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
{
for_each_allocator([&](auto& allocator) {
callback(allocator.slab_size(), allocator.num_allocated(), allocator.num_free());
auto num_allocated = allocator.num_allocated();
auto num_free = allocator.slab_count() - num_allocated;
callback(allocator.slab_size(), num_allocated, num_free);
});
}