AK: Introduce Math.h

This is to implement constexpr template based implementations for
mathematical functions

This also changes math.cpp to use these implementations.

Also adds a fastpath for floating point trucation for values smaller
than the signed 64 bit limit.
This commit is contained in:
Hendiadyoin1 2021-07-17 18:24:27 +02:00 committed by Ali Mohammad Pur
parent 675de847f7
commit c5f6ba6e71
2 changed files with 642 additions and 638 deletions

467
AK/Math.h Normal file
View file

@ -0,0 +1,467 @@
/*
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/StdLibExtraDetails.h>
#include <AK/Types.h>
namespace AK {
template<FloatingPoint T>
constexpr T NaN = __builtin_nan("");
template<FloatingPoint T>
constexpr T Pi = 3.141592653589793238462643383279502884L;
template<FloatingPoint T>
constexpr T E = 2.718281828459045235360287471352662498L;
namespace Details {
template<size_t>
constexpr size_t product_even();
template<>
constexpr size_t product_even<2>() { return 2; }
template<size_t value>
constexpr size_t product_even() { return value * product_even<value - 2>(); }
template<size_t>
constexpr size_t product_odd();
template<>
constexpr size_t product_odd<1>() { return 1; }
template<size_t value>
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
}
#define CONSTEXPR_STATE(function, args...) \
if (is_constant_evaluated()) { \
if (IsSame<T, long double>) \
return __builtin_##function##l(args); \
if (IsSame<T, double>) \
return __builtin_##function(args); \
if (IsSame<T, float>) \
return __builtin_##function##f(args); \
}
#define INTEGER_BUILTIN(name) \
template<Integral T> \
constexpr T name(T x) \
{ \
if constexpr (sizeof(T) == sizeof(long long)) \
return __builtin_##name##ll(x); \
if constexpr (sizeof(T) == sizeof(long)) \
return __builtin_##name##l(x); \
return __builtin_##name(x); \
}
INTEGER_BUILTIN(clz);
INTEGER_BUILTIN(ctz);
INTEGER_BUILTIN(popcnt);
namespace Division {
template<FloatingPoint T>
constexpr T fmod(T x, T y)
{
CONSTEXPR_STATE(fmod, x, y);
T res;
asm(
"fprem"
: "=t"(res)
: "0"(x), "u"(y));
return res;
}
template<FloatingPoint T>
constexpr T remainder(T x, T y)
{
CONSTEXPR_STATE(remainder, x, y);
T res;
asm(
"fprem1"
: "=t"(res)
: "0"(x), "u"(y));
return res;
}
}
using Division::fmod;
using Division::remainder;
template<FloatingPoint T>
constexpr T sqrt(T x)
{
CONSTEXPR_STATE(sqrt, x);
T res;
asm("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
template<FloatingPoint T>
constexpr T cbrt(T x)
{
CONSTEXPR_STATE(cbrt, x);
if (__builtin_isinf(x) || x == 0)
return x;
if (x < 0)
return -cbrt(-x);
T r = x;
T ex = 0;
while (r < 0.125l) {
r *= 8;
ex--;
}
while (r > 1.0l) {
r *= 0.125l;
ex++;
}
r = (-0.46946116l * r + 1.072302l) * r + 0.3812513l;
while (ex < 0) {
r *= 0.5l;
ex++;
}
while (ex > 0) {
r *= 2.0l;
ex--;
}
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
return r;
}
template<FloatingPoint T>
constexpr T fabs(T x)
{
if (is_constant_evaluated())
return x < 0 ? -x : x;
asm(
"fabs"
: "+t"(x));
return x;
}
namespace Trigonometry {
template<FloatingPoint T>
constexpr T hypot(T x, T y)
{
return sqrt(x * x + y * y);
}
template<FloatingPoint T>
constexpr T sin(T angle)
{
CONSTEXPR_STATE(sin, angle);
T ret;
asm(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
template<FloatingPoint T>
constexpr T cos(T angle)
{
CONSTEXPR_STATE(cos, angle);
T ret;
asm(
"fcos"
: "=t"(ret)
: "0"(angle));
return ret;
}
template<FloatingPoint T>
constexpr T tan(T angle)
{
CONSTEXPR_STATE(tan, angle);
double ret, one;
asm(
"fptan"
: "=t"(one), "=u"(ret)
: "0"(angle));
return ret;
}
template<FloatingPoint T>
constexpr T atan(T value)
{
CONSTEXPR_STATE(atan, value);
T ret;
asm(
"fld1\n"
"fpatan\n"
: "=t"(ret)
: "0"(value));
return ret;
}
template<FloatingPoint T>
constexpr T asin(T x)
{
CONSTEXPR_STATE(asin, x);
if (x > 1 || x < -1)
return NaN<T>;
if (x > (T)0.5 || x < (T)-0.5)
return 2 * atan<T>(x / (1 + sqrt<T>(1 - x * x)));
T squared = x * x;
T value = x;
T i = x * squared;
value += i * Details::product_odd<1>() / Details::product_even<2>() / 3;
i *= squared;
value += i * Details::product_odd<3>() / Details::product_even<4>() / 5;
i *= squared;
value += i * Details::product_odd<5>() / Details::product_even<6>() / 7;
i *= squared;
value += i * Details::product_odd<7>() / Details::product_even<8>() / 9;
i *= squared;
value += i * Details::product_odd<9>() / Details::product_even<10>() / 11;
i *= squared;
value += i * Details::product_odd<11>() / Details::product_even<12>() / 13;
i *= squared;
value += i * Details::product_odd<13>() / Details::product_even<14>() / 15;
i *= squared;
value += i * Details::product_odd<15>() / Details::product_even<16>() / 17;
return value;
}
template<FloatingPoint T>
constexpr T acos(T value)
{
CONSTEXPR_STATE(acos, value);
// FIXME: I am naive
return Pi<T> + asin(value);
}
template<FloatingPoint T>
constexpr T atan2(T y, T x)
{
CONSTEXPR_STATE(atan2, y, x);
T ret;
asm("fpatan"
: "=t"(ret)
: "0"(x), "u"(y)
: "st(1)");
return ret;
}
}
using Trigonometry::acos;
using Trigonometry::asin;
using Trigonometry::atan;
using Trigonometry::atan2;
using Trigonometry::cos;
using Trigonometry::hypot;
using Trigonometry::sin;
using Trigonometry::tan;
namespace Exponentials {
template<FloatingPoint T>
constexpr T log(T x)
{
CONSTEXPR_STATE(log, x);
T ret;
asm(
"fldln2\n"
"fxch %%st(1)\n"
"fyl2x\n"
: "=t"(ret)
: "0"(x));
return ret;
}
template<FloatingPoint T>
constexpr T log2(T x)
{
CONSTEXPR_STATE(log2, x);
T ret;
asm(
"fld1\n"
"fxch %%st(1)\n"
"fyl2x\n"
: "=t"(ret)
: "0"(x));
return ret;
}
template<Integral T>
constexpr T log2(T x)
{
return x ? 8 * sizeof(T) - clz(x) : 0;
}
template<FloatingPoint T>
constexpr T log10(T x)
{
CONSTEXPR_STATE(log10, x);
T ret;
asm(
"fldlg2\n"
"fxch %%st(1)\n"
"fyl2x\n"
: "=t"(ret)
: "0"(x));
return ret;
}
template<FloatingPoint T>
constexpr T exp(T exponent)
{
CONSTEXPR_STATE(exp, exponent);
T res;
asm("fldl2e\n"
"fmulp\n"
"fld1\n"
"fld %%st(1)\n"
"fprem\n"
"f2xm1\n"
"faddp\n"
"fscale\n"
"fstp %%st(1)"
: "=t"(res)
: "0"(exponent));
return res;
}
template<FloatingPoint T>
constexpr T exp2(T exponent)
{
CONSTEXPR_STATE(exp2, exponent);
T res;
asm("fld1\n"
"fld %%st(1)\n"
"fprem\n"
"f2xm1\n"
"faddp\n"
"fscale\n"
"fstp %%st(1)"
: "=t"(res)
: "0"(exponent));
return res;
}
template<Integral T>
constexpr T exp2(T exponent)
{
return 1u << exponent;
}
}
using Exponentials::exp;
using Exponentials::exp2;
using Exponentials::log;
using Exponentials::log10;
using Exponentials::log2;
namespace Hyperbolic {
template<FloatingPoint T>
constexpr T sinh(T x)
{
T exponentiated = exp<T>(x);
if (x > 0)
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
return (exponentiated - 1 / exponentiated) / 2;
}
template<FloatingPoint T>
constexpr T cosh(T x)
{
CONSTEXPR_STATE(cosh, x);
T exponentiated = exp(-x);
if (x < 0)
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
return (1 / exponentiated + exponentiated) / 2;
}
template<FloatingPoint T>
constexpr T tanh(T x)
{
if (x > 0) {
T exponentiated = exp<T>(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
T plusX = exp<T>(x);
T minusX = 1 / plusX;
return (plusX - minusX) / (plusX + minusX);
}
template<FloatingPoint T>
constexpr T asinh(T x)
{
return log<T>(x + sqrt<T>(x * x + 1));
}
template<FloatingPoint T>
constexpr T acosh(T x)
{
return log<T>(x + sqrt<T>(x * x - 1));
}
template<FloatingPoint T>
constexpr T atanh(T x)
{
return log<T>((1 + x) / (1 - x)) / (T)2.0l;
}
}
using Hyperbolic::acosh;
using Hyperbolic::asinh;
using Hyperbolic::atanh;
using Hyperbolic::cosh;
using Hyperbolic::sinh;
using Hyperbolic::tanh;
template<FloatingPoint T>
constexpr T pow(T x, T y)
{
CONSTEXPR_STATE(pow, x, y);
// fixme I am naive
if (__builtin_isnan(y))
return y;
if (y == 0)
return 1;
if (x == 0)
return 0;
if (y == 1)
return x;
int y_as_int = (int)y;
if (y == (T)y_as_int) {
T result = x;
for (int i = 0; i < fabs<T>(y) - 1; ++i)
result *= x;
if (y < 0)
result = 1.0l / result;
return result;
}
return exp2<T>(y * log2<T>(x));
}
#undef CONSTEXPR_STATE
#undef INTEGER_BUILTIN
}

View file

@ -6,6 +6,7 @@
*/
#include <AK/ExtraMathConstants.h>
#include <AK/Math.h>
#include <AK/Platform.h>
#include <AK/StdLibExtras.h>
#include <LibC/assert.h>
@ -345,124 +346,196 @@ long double nanl(const char* s) NOEXCEPT
return __builtin_nanl(s);
}
#define MAKE_AK_BACKED1(name) \
long double name##l(long double arg) NOEXCEPT \
{ \
return AK::name<long double>(arg); \
} \
double name(double arg) NOEXCEPT \
{ \
return AK::name<double>(arg); \
} \
float name##f(float arg) NOEXCEPT \
{ \
return AK::name<float>(arg); \
}
#define MAKE_AK_BACKED2(name) \
long double name##l(long double arg1, long double arg2) NOEXCEPT \
{ \
return AK::name<long double>(arg1, arg2); \
} \
double name(double arg1, double arg2) NOEXCEPT \
{ \
return AK::name<double>(arg1, arg2); \
} \
float name##f(float arg1, float arg2) NOEXCEPT \
{ \
return AK::name<float>(arg1, arg2); \
}
MAKE_AK_BACKED1(sin);
MAKE_AK_BACKED1(cos);
MAKE_AK_BACKED1(tan);
MAKE_AK_BACKED1(asin);
MAKE_AK_BACKED1(acos);
MAKE_AK_BACKED1(atan);
MAKE_AK_BACKED1(sinh);
MAKE_AK_BACKED1(cosh);
MAKE_AK_BACKED1(tanh);
MAKE_AK_BACKED1(asinh);
MAKE_AK_BACKED1(acosh);
MAKE_AK_BACKED1(atanh);
MAKE_AK_BACKED1(sqrt);
MAKE_AK_BACKED1(cbrt);
MAKE_AK_BACKED1(log);
MAKE_AK_BACKED1(log2);
MAKE_AK_BACKED1(log10);
MAKE_AK_BACKED1(exp);
MAKE_AK_BACKED1(exp2);
MAKE_AK_BACKED1(fabs);
MAKE_AK_BACKED2(atan2);
MAKE_AK_BACKED2(hypot);
MAKE_AK_BACKED2(fmod);
MAKE_AK_BACKED2(pow);
MAKE_AK_BACKED2(remainder);
long double truncl(long double x) NOEXCEPT
{
if (fabsl(x) < LONG_LONG_MAX) {
// This is 1.6 times faster than the implemenation using the "internal_to_integer"
// helper (on x86_64)
// https://quick-bench.com/q/xBmxuY8am9qibSYVna90Y6PIvqA
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
}
return internal_to_integer(x, RoundingMode::ToZero);
}
double trunc(double x) NOEXCEPT
{
if (fabs(x) < LONG_LONG_MAX) {
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
}
return internal_to_integer(x, RoundingMode::ToZero);
}
float truncf(float x) NOEXCEPT
{
return internal_to_integer(x, RoundingMode::ToZero);
}
long double truncl(long double x) NOEXCEPT
{
return internal_to_integer(x, RoundingMode::ToZero);
}
long double cosl(long double angle) NOEXCEPT
{
long double ret = 0.0;
asm(
"fcos"
: "=t"(ret)
: "0"(angle));
return ret;
}
double cos(double angle) NOEXCEPT
{
double ret = 0.0;
asm(
"fcos"
: "=t"(ret)
: "0"(angle));
return ret;
}
float cosf(float angle) NOEXCEPT
{
float ret = 0.0;
asm(
"fcos"
: "=t"(ret)
: "0"(angle));
return ret;
}
long double sinl(long double angle) NOEXCEPT
{
long double ret = 0.0;
asm(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
// This can also be done with a taylor expansion, but for
// now this works pretty well (and doesn't mess anything up
// in quake in particular, which is very Floating-Point precision
// heavy)
double sin(double angle) NOEXCEPT
{
double ret = 0.0;
asm(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
float sinf(float angle) NOEXCEPT
{
float ret = 0.0f;
asm(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
long double powl(long double x, long double y) NOEXCEPT
{
// FIXME: Please fix me. I am naive.
if (isnan(y))
return y;
if (y == 0)
return 1;
if (x == 0)
return 0;
if (y == 1)
if (fabsf(x) < LONG_LONG_MAX) {
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
int y_as_int = (int)y;
if (y == (long double)y_as_int) {
long double result = x;
for (int i = 0; i < fabsl(y) - 1; ++i)
result *= x;
if (y < 0)
result = 1.0l / result;
return result;
}
if (x < 0) {
return 1.l / exp2l(y * log2l(-x));
}
return exp2l(y * log2l(x));
return internal_to_integer(x, RoundingMode::ToZero);
}
double pow(double x, double y) NOEXCEPT
long double rintl(long double value)
{
return (double)powl(x, y);
double res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
}
double rint(double value)
{
double res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
}
float rintf(float value)
{
double res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
}
float powf(float x, float y) NOEXCEPT
long lrintl(long double value)
{
return (float)powl(x, y);
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
long lrint(double value)
{
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
long lrintf(float value)
{
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
long long llrintl(long double value)
{
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
long long llrint(double value)
{
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
long long llrintf(float value)
{
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
}
// On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn
@ -481,27 +554,6 @@ float ldexpf(float x, int exp) NOEXCEPT
return internal_scalbn(x, exp);
}
long double tanhl(long double x) NOEXCEPT
{
if (x > 0) {
long double exponentiated = expl(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
long double plusX = expl(x);
long double minusX = 1 / plusX;
return (plusX - minusX) / (plusX + minusX);
}
double tanh(double x) NOEXCEPT
{
return (double)tanhl(x);
}
float tanhf(float x) NOEXCEPT
{
return (float)tanhl(x);
}
[[maybe_unused]] static long double ampsin(long double angle) NOEXCEPT
{
long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI;
@ -519,345 +571,6 @@ float tanhf(float x) NOEXCEPT
return quadratic_term + linear_term;
}
long double tanl(long double angle) NOEXCEPT
{
long double ret = 0.0, one;
__asm__(
"fptan"
: "=t"(one), "=u"(ret)
: "0"(angle));
return ret;
}
double tan(double angle) NOEXCEPT
{
return (double)tanl(angle);
}
float tanf(float angle) NOEXCEPT
{
return (float)tanl(angle);
}
long double sqrtl(long double x) NOEXCEPT
{
long double res;
asm("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
double sqrt(double x) NOEXCEPT
{
double res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
float sqrtf(float x) NOEXCEPT
{
float res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
long double sinhl(long double x) NOEXCEPT
{
long double exponentiated = expl(x);
if (x > 0)
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
return (exponentiated - 1 / exponentiated) / 2;
}
double sinh(double x) NOEXCEPT
{
return (double)sinhl(x);
}
float sinhf(float x) NOEXCEPT
{
return (float)sinhl(x);
}
long double log10l(long double x) NOEXCEPT
{
long double ret = 0.0l;
__asm__(
"fldlg2\n"
"fld %%st(1)\n"
"fyl2x\n"
"fstp %%st(1)"
: "=t"(ret)
: "0"(x));
return ret;
}
double log10(double x) NOEXCEPT
{
return (double)log10l(x);
}
float log10f(float x) NOEXCEPT
{
return (float)log10l(x);
}
long double logl(long double x) NOEXCEPT
{
long double ret = 0.0l;
asm(
"fldln2\n"
"fld %%st(1)\n"
"fyl2x\n"
"fstp %%st(1)"
: "=t"(ret)
: "0"(x));
return ret;
}
double log(double x) NOEXCEPT
{
return (double)logl(x);
}
float logf(float x) NOEXCEPT
{
return (float)logl(x);
}
long double fmodl(long double index, long double period) NOEXCEPT
{
return index - truncl(index / period) * period;
}
double fmod(double index, double period) NOEXCEPT
{
return index - trunc(index / period) * period;
}
float fmodf(float index, float period) NOEXCEPT
{
return index - truncf(index / period) * period;
}
// FIXME: These aren't exactly like fmod, but these definitions are probably good enough for now
long double remainderl(long double x, long double y) NOEXCEPT
{
return fmodl(x, y);
}
double remainder(double x, double y) NOEXCEPT
{
return fmod(x, y);
}
float remainderf(float x, float y) NOEXCEPT
{
return fmodf(x, y);
}
long double expl(long double exponent) NOEXCEPT
{
long double res = 0;
asm("fldl2e\n"
"fmulp\n"
"fld1\n"
"fld %%st(1)\n"
"fprem\n"
"f2xm1\n"
"faddp\n"
"fscale\n"
"fstp %%st(1)"
: "=t"(res)
: "0"(exponent));
return res;
}
double exp(double exponent) NOEXCEPT
{
return (double)expl(exponent);
}
float expf(float exponent) NOEXCEPT
{
return (float)expl(exponent);
}
long double exp2l(long double exponent) NOEXCEPT
{
long double res = 0;
asm("fld1\n"
"fld %%st(1)\n"
"fprem\n"
"f2xm1\n"
"faddp\n"
"fscale\n"
"fstp %%st(1)"
: "=t"(res)
: "0"(exponent));
return res;
}
double exp2(double exponent) NOEXCEPT
{
return (double)exp2l(exponent);
}
float exp2f(float exponent) NOEXCEPT
{
return (float)exp2l(exponent);
}
long double coshl(long double x) NOEXCEPT
{
long double exponentiated = expl(-x);
if (x < 0)
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
return (1 / exponentiated + exponentiated) / 2;
}
double cosh(double x) NOEXCEPT
{
return (double)coshl(x);
}
float coshf(float x) NOEXCEPT
{
return (float)coshl(x);
}
long double atan2l(long double y, long double x) NOEXCEPT
{
long double result = 0; //atanl(y / x);
asm("fpatan"
: "=t"(result)
: "0"(x), "u"(y)
: "st(1)");
return result;
}
double atan2(double y, double x) NOEXCEPT
{
double result = 0; //atanl(y / x);
asm("fpatan"
: "=t"(result)
: "0"(x), "u"(y)
: "st(1)");
return result;
}
float atan2f(float y, float x) NOEXCEPT
{
float result = 0; //atanl(y / x);
asm("fpatan"
: "=t"(result)
: "0"(x), "u"(y)
: "st(1)");
return result;
}
long double atanl(long double x) NOEXCEPT
{
asm(
"fld1\n"
"fpatan\n"
: "=t"(x)
: "0"(x));
return x;
}
double atan(double x) NOEXCEPT
{
asm(
"fld1\n"
"fpatan\n"
: "=t"(x)
: "0"(x));
return x;
}
float atanf(float x) NOEXCEPT
{
asm(
"fld1\n"
"fpatan\n"
: "=t"(x)
: "0"(x));
return x;
}
long double asinl(long double x) NOEXCEPT
{
if (x > 1 || x < -1)
return NAN;
if (x > 0.5 || x < -0.5)
return 2 * atanl(x / (1 + sqrtl(1 - x * x)));
long double squared = x * x;
long double value = x;
long double i = x * squared;
value += i * product_odd<1>() / product_even<2>() / 3;
i *= squared;
value += i * product_odd<3>() / product_even<4>() / 5;
i *= squared;
value += i * product_odd<5>() / product_even<6>() / 7;
i *= squared;
value += i * product_odd<7>() / product_even<8>() / 9;
i *= squared;
value += i * product_odd<9>() / product_even<10>() / 11;
i *= squared;
value += i * product_odd<11>() / product_even<12>() / 13;
i *= squared;
value += i * product_odd<13>() / product_even<14>() / 15;
i *= squared;
value += i * product_odd<15>() / product_even<16>() / 17;
return value;
}
double asin(double x) NOEXCEPT
{
return (double)asinl(x);
}
float asinf(float x) NOEXCEPT
{
return (float)asinl(x);
}
long double acosl(long double x) NOEXCEPT
{
return M_PI_2 - asinl(x);
}
double acos(double x) NOEXCEPT
{
return M_PI_2 - asin(x);
}
float acosf(float x) NOEXCEPT
{
return static_cast<float>(M_PI_2) - asinf(x);
}
long double fabsl(long double value) NOEXCEPT
{
return value < 0 ? -value : value;
}
double fabs(double value) NOEXCEPT
{
return value < 0 ? -value : value;
}
float fabsf(float value) NOEXCEPT
{
return value < 0 ? -value : value;
}
int ilogbl(long double x) NOEXCEPT
{
return internal_ilogb(x);
@ -888,29 +601,6 @@ float logbf(float x) NOEXCEPT
return ilogbf(x);
}
long double log2l(long double x) NOEXCEPT
{
long double ret = 0.0;
asm(
"fld1\n"
"fld %%st(1)\n"
"fyl2x\n"
"fstp %%st(1)"
: "=t"(ret)
: "0"(x));
return ret;
}
double log2(double x) NOEXCEPT
{
return (double)log2l(x);
}
float log2f(float x) NOEXCEPT
{
return (float)log2l(x);
}
double frexp(double x, int* exp) NOEXCEPT
{
*exp = (x == 0) ? 0 : (1 + ilogb(x));
@ -989,51 +679,6 @@ long double floorl(long double value) NOEXCEPT
return internal_to_integer(value, RoundingMode::Down);
}
long double rintl(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
double rint(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
float rintf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
long lrintl(long double value) NOEXCEPT
{
return (long)internal_to_integer(value, RoundingMode { fegetround() });
}
long lrint(double value) NOEXCEPT
{
return (long)internal_to_integer(value, RoundingMode { fegetround() });
}
long lrintf(float value) NOEXCEPT
{
return (long)internal_to_integer(value, RoundingMode { fegetround() });
}
long long llrintl(long double value) NOEXCEPT
{
return (long long)internal_to_integer(value, RoundingMode { fegetround() });
}
long long llrint(double value) NOEXCEPT
{
return (long long)internal_to_integer(value, RoundingMode { fegetround() });
}
long long llrintf(float value) NOEXCEPT
{
return (long long)internal_to_integer(value, RoundingMode { fegetround() });
}
float ceilf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Up);
@ -1150,54 +795,6 @@ float expm1f(float x) NOEXCEPT
return expf(x) - 1;
}
long double cbrtl(long double x) NOEXCEPT
{
if (isinf(x) || x == 0)
return x;
if (x < 0)
return -cbrtl(-x);
long double r = x;
long double ex = 0;
while (r < 0.125l) {
r *= 8;
ex--;
}
while (r > 1.0l) {
r *= 0.125l;
ex++;
}
r = (-0.46946116l * r + 1.072302l) * r + 0.3812513l;
while (ex < 0) {
r *= 0.5l;
ex++;
}
while (ex > 0) {
r *= 2.0l;
ex--;
}
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
r = (2.0l / 3.0l) * r + (1.0l / 3.0l) * x / (r * r);
return r;
}
double cbrt(double x) NOEXCEPT
{
return (double)cbrtl(x);
}
float cbrtf(float x) NOEXCEPT
{
return (float)cbrtl(x);
}
long double log1pl(long double x) NOEXCEPT
{
return logl(1 + x);
@ -1213,66 +810,6 @@ float log1pf(float x) NOEXCEPT
return logf(1 + x);
}
long double acoshl(long double x) NOEXCEPT
{
return logl(x + sqrtl(x * x - 1));
}
double acosh(double x) NOEXCEPT
{
return log(x + sqrt(x * x - 1));
}
float acoshf(float x) NOEXCEPT
{
return logf(x + sqrtf(x * x - 1));
}
long double asinhl(long double x) NOEXCEPT
{
return logl(x + sqrtl(x * x + 1));
}
double asinh(double x) NOEXCEPT
{
return log(x + sqrt(x * x + 1));
}
float asinhf(float x) NOEXCEPT
{
return logf(x + sqrtf(x * x + 1));
}
long double atanhl(long double x) NOEXCEPT
{
return logl((1 + x) / (1 - x)) / 2.0l;
}
double atanh(double x) NOEXCEPT
{
return log((1 + x) / (1 - x)) / 2.0;
}
float atanhf(float x) NOEXCEPT
{
return logf((1 + x) / (1 - x)) / 2.0f;
}
long double hypotl(long double x, long double y) NOEXCEPT
{
return sqrtl(x * x + y * y);
}
double hypot(double x, double y) NOEXCEPT
{
return sqrt(x * x + y * y);
}
float hypotf(float x, float y) NOEXCEPT
{
return sqrtf(x * x + y * y);
}
long double erfl(long double x) NOEXCEPT
{
// algorithm taken from Abramowitz and Stegun (no. 26.2.17)