mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-22 17:31:58 -05:00
AK: Add complex number library
Useful for diverse algorithms. Also added some tests for it.
This commit is contained in:
parent
0d5e1e9df1
commit
f4f5a1c0e7
4 changed files with 412 additions and 0 deletions
342
AK/Complex.h
Normal file
342
AK/Complex.h
Normal file
|
@ -0,0 +1,342 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <AK/Concepts.h>
|
||||
#if __has_include(<math.h>)
|
||||
# define AKCOMPLEX_CAN_USE_MATH_H
|
||||
# include <math.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
# if __cplusplus >= 201103L
|
||||
# define COMPLEX_NOEXCEPT noexcept
|
||||
# endif
|
||||
namespace AK {
|
||||
|
||||
template<AK::Concepts::Arithmetic T>
|
||||
class [[gnu::packed]] Complex {
|
||||
public:
|
||||
constexpr Complex()
|
||||
: m_real(0)
|
||||
, m_imag(0)
|
||||
{
|
||||
}
|
||||
|
||||
constexpr Complex(T real)
|
||||
: m_real(real)
|
||||
, m_imag((T)0)
|
||||
{
|
||||
}
|
||||
|
||||
constexpr Complex(T real, T imaginary)
|
||||
: m_real(real)
|
||||
, m_imag(imaginary)
|
||||
{
|
||||
}
|
||||
|
||||
constexpr T real() const COMPLEX_NOEXCEPT { return m_real; }
|
||||
|
||||
constexpr T imag() const COMPLEX_NOEXCEPT { return m_imag; }
|
||||
|
||||
constexpr T magnitude_squared() const COMPLEX_NOEXCEPT { return m_real * m_real + m_imag * m_imag; }
|
||||
|
||||
# ifdef AKCOMPLEX_CAN_USE_MATH_H
|
||||
constexpr T magnitude() const COMPLEX_NOEXCEPT
|
||||
{
|
||||
// for numbers 32 or under bit long we don't need the extra precision of sqrt
|
||||
// although it may return values with a considerable error if real and imag are too big?
|
||||
if constexpr (sizeof(T) <= sizeof(float)) {
|
||||
return sqrtf(m_real * m_real + m_imag * m_imag);
|
||||
} else if constexpr (sizeof(T) <= sizeof(double)) {
|
||||
return sqrt(m_real * m_real + m_imag * m_imag);
|
||||
} else {
|
||||
return sqrtl(m_real * m_real + m_imag * m_imag);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr T phase() const COMPLEX_NOEXCEPT
|
||||
{
|
||||
return atan2(m_imag, m_real);
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U, AK::Concepts::Arithmetic V>
|
||||
static constexpr Complex<T> from_polar(U magnitude, V phase)
|
||||
{
|
||||
if constexpr (sizeof(T) <= sizeof(float)) {
|
||||
return Complex<T>(magnitude * cosf(phase), magnitude * sinf(phase));
|
||||
} else if constexpr (sizeof(T) <= sizeof(double)) {
|
||||
return Complex<T>(magnitude * cos(phase), magnitude * sin(phase));
|
||||
} else {
|
||||
return Complex<T>(magnitude * cosl(phase), magnitude * sinl(phase));
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T>& operator=(const Complex<U>& other)
|
||||
{
|
||||
m_real = other.real();
|
||||
m_imag = other.imag();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T>& operator=(const U& x)
|
||||
{
|
||||
m_real = x;
|
||||
m_imag = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator+=(const Complex<U>& x)
|
||||
{
|
||||
m_real += x.real();
|
||||
m_imag += x.imag();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator+=(const U& x)
|
||||
{
|
||||
m_real += x.real();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator-=(const Complex<U>& x)
|
||||
{
|
||||
m_real -= x.real();
|
||||
m_imag -= x.imag();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator-=(const U& x)
|
||||
{
|
||||
m_real -= x.real();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator*=(const Complex<U>& x)
|
||||
{
|
||||
const T real = m_real;
|
||||
m_real = real * x.real() - m_imag * x.imag();
|
||||
m_imag = real * x.imag() + m_imag * x.real();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator*=(const U& x)
|
||||
{
|
||||
m_real *= x;
|
||||
m_imag *= x;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator/=(const Complex<U>& x)
|
||||
{
|
||||
const T real = m_real;
|
||||
const T divisor = x.real() * x.real() + x.imag() * x.imag();
|
||||
m_real = (real * x.real() + m_imag * x.imag()) / divisor;
|
||||
m_imag = (m_imag * x.real() - x.real() * x.imag()) / divisor;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator/=(const U& x)
|
||||
{
|
||||
m_real /= x;
|
||||
m_imag /= x;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator+(const Complex<U>& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x += a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator+(const U& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x += a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator-(const Complex<U>& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x -= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator-(const U& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x -= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator*(const Complex<U>& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x *= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator*(const U& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x *= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator/(const Complex<U>& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x /= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator/(const U& a)
|
||||
{
|
||||
Complex<T> x = *this;
|
||||
x /= a;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr bool operator==(const Complex<U>& a)
|
||||
{
|
||||
return (this->real() == a.real()) && (this->imag() == a.imag());
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic U>
|
||||
constexpr bool operator!=(const Complex<U>& a)
|
||||
{
|
||||
return !(*this == a);
|
||||
}
|
||||
|
||||
constexpr Complex<T> operator+()
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
|
||||
constexpr Complex<T> operator-()
|
||||
{
|
||||
return Complex<T>(-m_real, -m_imag);
|
||||
}
|
||||
|
||||
private:
|
||||
T m_real;
|
||||
T m_imag;
|
||||
};
|
||||
|
||||
// reverse associativity operators for scalars
|
||||
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator+(const U& b, const Complex<T>& a)
|
||||
{
|
||||
Complex<T> x = a;
|
||||
x += b;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator-(const U& b, const Complex<T>& a)
|
||||
{
|
||||
Complex<T> x = a;
|
||||
x -= b;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator*(const U& b, const Complex<T>& a)
|
||||
{
|
||||
Complex<T> x = a;
|
||||
x *= b;
|
||||
return x;
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
||||
constexpr Complex<T> operator/(const U& b, const Complex<T>& a)
|
||||
{
|
||||
Complex<T> x = a;
|
||||
x /= b;
|
||||
return x;
|
||||
}
|
||||
|
||||
// some identities
|
||||
template<AK::Concepts::Arithmetic T>
|
||||
static constinit Complex<T> complex_real_unit = Complex<T>((T)1, (T)0);
|
||||
template<AK::Concepts::Arithmetic T>
|
||||
static constinit Complex<T> complex_imag_unit = Complex<T>((T)0, (T)1);
|
||||
|
||||
# ifdef AKCOMPLEX_CAN_USE_MATH_H
|
||||
template<AK::Concepts::Arithmetic T, AK::Concepts::Arithmetic U>
|
||||
static constexpr bool approx_eq(const Complex<T>& a, const Complex<U>& b, const double margin = 0.000001)
|
||||
{
|
||||
const auto x = const_cast<Complex<T>&>(a) - const_cast<Complex<U>&>(b);
|
||||
return x.magnitude() <= margin;
|
||||
}
|
||||
|
||||
//complex version of exp()
|
||||
template<AK::Concepts::Arithmetic T>
|
||||
static constexpr Complex<T> cexp(const Complex<T>& a)
|
||||
{
|
||||
//FIXME: this can probably be faster and not use so many expensive trigonometric functions
|
||||
if constexpr (sizeof(T) <= sizeof(float)) {
|
||||
return expf(a.real()) * Complex<T>(cosf(a.imag()), sinf(a.imag()));
|
||||
} else if constexpr (sizeof(T) <= sizeof(double)) {
|
||||
return exp(a.real()) * Complex<T>(cos(a.imag()), sin(a.imag()));
|
||||
} else {
|
||||
return expl(a.real()) * Complex<T>(cosl(a.imag()), sinl(a.imag()));
|
||||
}
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
||||
using AK::Complex;
|
||||
using AK::complex_imag_unit;
|
||||
using AK::complex_real_unit;
|
||||
# ifdef AKCOMPLEX_CAN_USE_MATH_H
|
||||
using AK::approx_eq;
|
||||
using AK::cexp;
|
||||
# endif
|
||||
#endif
|
|
@ -38,12 +38,16 @@ concept Integral = IsIntegral<T>::value;
|
|||
template<typename T>
|
||||
concept FloatingPoint = IsFloatingPoint<T>::value;
|
||||
|
||||
template<typename T>
|
||||
concept Arithmetic = IsArithmetic<T>::value;
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if defined(__cpp_concepts) && !defined(__COVERITY__)
|
||||
|
||||
using AK::IsArithmetic;
|
||||
using AK::IsFloatingPoint;
|
||||
using AK::IsIntegral;
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ set(AK_TEST_SOURCES
|
|||
TestCircularDeque.cpp
|
||||
TestCircularDuplexStream.cpp
|
||||
TestCircularQueue.cpp
|
||||
TestComplex.cpp
|
||||
TestDistinctNumeric.cpp
|
||||
TestDoublyLinkedList.cpp
|
||||
TestEndian.cpp
|
||||
|
|
65
AK/Tests/TestComplex.cpp
Normal file
65
AK/Tests/TestComplex.cpp
Normal file
|
@ -0,0 +1,65 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <AK/Complex.h>
|
||||
#include <AK/TestSuite.h>
|
||||
|
||||
TEST_CASE(Complex)
|
||||
{
|
||||
auto a = Complex<float> { 1.f, 1.f };
|
||||
auto b = complex_real_unit<double> + Complex<double> { 0, 1 } * 1;
|
||||
EXPECT_APPROXIMATE(a.real(), b.real());
|
||||
EXPECT_APPROXIMATE(a.imag(), b.imag());
|
||||
|
||||
#ifdef AKCOMPLEX_CAN_USE_MATH_H
|
||||
EXPECT_APPROXIMATE((complex_imag_unit<float> - complex_imag_unit<float>).magnitude(), 0);
|
||||
EXPECT_APPROXIMATE((complex_imag_unit<float> + complex_real_unit<float>).magnitude(), sqrt(2));
|
||||
|
||||
auto c = Complex<double> { 0., 1. };
|
||||
auto d = Complex<double>::from_polar(1., M_PI / 2.);
|
||||
EXPECT_APPROXIMATE(c.real(), d.real());
|
||||
EXPECT_APPROXIMATE(c.imag(), d.imag());
|
||||
|
||||
c = Complex<double> { -1., 1. };
|
||||
d = Complex<double>::from_polar(sqrt(2.), 3. * M_PI / 4.);
|
||||
EXPECT_APPROXIMATE(c.real(), d.real());
|
||||
EXPECT_APPROXIMATE(c.imag(), d.imag());
|
||||
EXPECT_APPROXIMATE(d.phase(), 3. * M_PI / 4.);
|
||||
EXPECT_APPROXIMATE(c.magnitude(), d.magnitude());
|
||||
EXPECT_APPROXIMATE(c.magnitude(), sqrt(2.));
|
||||
#endif
|
||||
EXPECT_EQ((complex_imag_unit<double> * complex_imag_unit<double>).real(), -1.);
|
||||
EXPECT_EQ((complex_imag_unit<double> / complex_imag_unit<double>).real(), 1.);
|
||||
|
||||
EXPECT_EQ(Complex(1., 10.) == (Complex<double>(1., 0.) + Complex(0., 10.)), true);
|
||||
EXPECT_EQ(Complex(1., 10.) != (Complex<double>(1., 1.) + Complex(0., 10.)), true);
|
||||
#ifdef AKCOMPLEX_CAN_USE_MATH_H
|
||||
EXPECT_EQ(approx_eq(Complex<int>(1), Complex<float>(1.0000004f)), true);
|
||||
EXPECT_APPROXIMATE(cexp(Complex<double>(0., 1.) * M_PI).real(), -1.);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST_MAIN(Complex)
|
Loading…
Reference in a new issue