Wrap thread creation in a Thread::try_create() helper that first
allocates a kernel stack region. If that allocation fails, we propagate
an ENOMEM error to the caller.
This avoids the situation where a thread is half-constructed, without a
valid kernel stack, and avoids having to do messy cleanup in that case.
This patch adds sys$msyscall() which is loosely based on an OpenBSD
mechanism for preventing syscalls from non-blessed memory regions.
It works similarly to pledge and unveil, you can call it as many
times as you like, and when you're finished, you call it with a null
pointer and it will stop accepting new regions from then on.
If a syscall later happens and doesn't originate from one of the
previously blessed regions, the kernel will simply crash the process.
We had an exception that allowed SOL_SOCKET + SO_PEERCRED on local
socket to support LibIPC's PID exchange mechanism. This is no longer
needed so let's just remove the exception.
It's useful for programs to change their thread names to say something
interesting about what they are working on. Let's not require "thread"
for this since single-threaded programs may want to do it without
pledging "thread".
This prevents sys$mmap() and sys$mprotect() from creating executable
memory mappings in pledged programs that don't have this promise.
Note that the dynamic loader runs before pledging happens, so it's
unaffected by this.
This adds another layer of defense against introducing new code into a
running process. The only permitted way of doing so is by mmapping an
open file with PROT_READ | PROT_EXEC.
This does make any future JIT implementations slightly more complicated
but I think it's a worthwhile trade-off at this point. :^)
This patch adds enforcement of two new rules:
- Memory that was previously writable cannot become executable
- Memory that was previously executable cannot become writable
Unfortunately we have to make an exception for text relocations in the
dynamic loader. Since those necessitate writing into a private copy
of library code, we allow programs to transition from RW to RX under
very specific conditions. See the implementation of sys$mprotect()'s
should_make_executable_exception_for_dynamic_loader() for details.
When mounting an Ext2FS, a block device source is required. All other
filesystem types are unaffected, as most of them ignore the source file
descriptor anyway.
Fixes#5153.
`allocate_randomized` assert an already sanitized size but `mmap` were
just forwarding whatever the process asked so it was possible to
trigger a kernel panic from an unpriviliged process just by asking some
randomly placed memory and a size non alligned with the page size.
This fixes this issue by rounding up to the next page size before
calling `allocate_randomized`.
Fixes#5149
This can be used to request random VM placement instead of the highly
predictable regular mmap(nullptr, ...) VM allocation strategy.
It will soon be used to implement ASLR in the dynamic loader. :^)
When passing nullptr for either promises or execpromises to pledge(),
the expected behaviour is to not change their current value at all - we
were accidentally resetting them to 0, effectively dropping previously
pledge()'d promises.
We now move the execpromises state into the regular promises, and clear
the execpromises state.
Also make sure to duplicate the promise state on fork.
This fixes an issue where "su" would launch a shell which immediately
crashed due to not having pledged "stdio".
Let's force callers to provide a VM range when allocating a region.
This makes ENOMEM error handling more visible and removes implicit
VM allocation which felt a bit magical.
This tells the kernel that the process wants to use pledge, but without
pledging anything - effectively restricting it to syscalls that don't
require a certain promise. This is part of OpenBSD's pledge() as well,
which served as basis for Serenity's.
Instead of letting each File subclass do range allocation in their
mmap() override, do it up front in sys$mmap().
This makes us honor alignment requests for file-backed memory mappings
and simplifies the code somwhat.
This was done with the help of several scripts, I dump them here to
easily find them later:
awk '/#ifdef/ { print "#cmakedefine01 "$2 }' AK/Debug.h.in
for debug_macro in $(awk '/#ifdef/ { print $2 }' AK/Debug.h.in)
do
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/#ifdef '$debug_macro'/#if '$debug_macro'/' {} \;
done
# Remember to remove WRAPPER_GERNERATOR_DEBUG from the list.
awk '/#cmake/ { print "set("$2" ON)" }' AK/Debug.h.in
For some reason we were keeping the bits 04777 in file modes. That
doesn't seem right and I can't think of a reason why the set-uid bit
should be allowed to slip through.
This was just an alias for "unix" that I added early on back when there
was some belief that we might be compatible with OpenBSD. We're clearly
never going to be compatible with their pledges so just drop the alias.
..and allow implicit creation of KResult and KResultOr from ErrnoCode.
This means that kernel functions that return those types can finally
do "return EINVAL;" and it will just work.
There's a handful of functions that still deal with signed integers
that should be converted to return KResults.
This adds support for FUTEX_WAKE_OP, FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET,
FUTEX_REQUEUE, and FUTEX_CMP_REQUEUE, as well well as global and private
futex and absolute/relative timeouts against the appropriate clock. This
also changes the implementation so that kernel resources are only used when
a thread is blocked on a futex.
Global futexes are implemented as offsets in VMObjects, so that different
processes can share a futex against the same VMObject despite potentially
being mapped at different virtual addresses.
This sort-of matches what some other systems do and seems like a
generally sane thing to do instead of allowing programs to spawn a
child with a nearly full stack.
We forgot to remove the automatic SMAP disablers after fixing up all
this code to not access userspace memory directly. Let's lock things
down at last. :^)
All users of this mechanism have been switched to anonymous files and
passing file descriptors with sendfd()/recvfd().
Shbufs got us where we are today, but it's time we say good-bye to them
and welcome a much more idiomatic replacement. :^)