This allows us to determine what the previous mode (user or kernel)
was, e.g. in the timer interrupt. This is used e.g. to determine
whether a signal handler should be set up.
Fixes#5096
Let's force callers to provide a VM range when allocating a region.
This makes ENOMEM error handling more visible and removes implicit
VM allocation which felt a bit magical.
This was done with the help of several scripts, I dump them here to
easily find them later:
awk '/#ifdef/ { print "#cmakedefine01 "$2 }' AK/Debug.h.in
for debug_macro in $(awk '/#ifdef/ { print $2 }' AK/Debug.h.in)
do
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/#ifdef '$debug_macro'/#if '$debug_macro'/' {} \;
done
# Remember to remove WRAPPER_GERNERATOR_DEBUG from the list.
awk '/#cmake/ { print "set("$2" ON)" }' AK/Debug.h.in
It was possible to signal a process while it was paging in an inode
backed VM object. This would cause the inode read to EINTR, and the
page fault handler would assert.
Solve this by simply not unblocking threads due to signals if they are
currently busy handling a page fault. This is probably not the best way
to solve this issue, so I've added a FIXME to that effect.
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.
This commit touches some dbg() calls which are enclosed in macros. This
should be fine because with the new constexpr stuff, we ensure that the
stuff actually compiles.
Problem:
- Many constructors are defined as `{}` rather than using the ` =
default` compiler-provided constructor.
- Some types provide an implicit conversion operator from `nullptr_t`
instead of requiring the caller to default construct. This violates
the C++ Core Guidelines suggestion to declare single-argument
constructors explicit
(https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit).
Solution:
- Change default constructors to use the compiler-provided default
constructor.
- Remove implicit conversion operators from `nullptr_t` and change
usage to enforce type consistency without conversion.
This patch merges the profiling functionality in the kernel with the
performance events mechanism. A profiler sample is now just another
perf event, rather than a dedicated thing.
Since perf events were already per-process, this now makes profiling
per-process as well.
Processes with perf events would already write out a perfcore.PID file
to the current directory on death, but since we may want to profile
a process and then let it continue running, recorded perf events can
now be accessed at any time via /proc/PID/perf_events.
This patch also adds information about process memory regions to the
perfcore JSON format. This removes the need to supply a core dump to
the Profiler app for symbolication, and so the "profiler coredump"
mechanism is removed entirely.
There's still a hard limit of 4MB worth of perf events per process,
so this is by no means a perfect final design, but it's a nice step
forward for both simplicity and stability.
Fixes#4848Fixes#4849
If the allocation fails (e.g ENOMEM) we want to simply return an error
from sys$execve() and continue executing the current executable.
This patch also moves make_userspace_stack_for_main_thread() out of the
Thread class since it had nothing in particular to do with Thread.
Now that the CrashDaemon symbolicates crashes in userspace, let's take
this one step further and stop trying to symbolicate userspace programs
in the kernel at all.
This implements a number of changes related to time:
* If a HPET is present, it is now used only as a system timer, unless
the Local APIC timer is used (in which case the HPET timer will not
trigger any interrupts at all).
* If a HPET is present, the current time can now be as accurate as the
chip can be, independently from the system timer. We now query the
HPET main counter for the current time in CPU #0's system timer
interrupt, and use that as a base line. If a high precision time is
queried, that base line is used in combination with quering the HPET
timer directly, which should give a much more accurate time stamp at
the expense of more overhead. For faster time stamps, the more coarse
value based on the last interrupt will be returned. This also means
that any missed interrupts should not cause the time to drift.
* The default system interrupt rate is reduced to about 250 per second.
* Fix calculation of Thread CPU usage by using the amount of ticks they
used rather than the number of times a context switch happened.
* Implement CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE and use it
for most cases where precise timestamps are not needed.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
We need to account for how many shared lock instances the current
thread owns, so that we can properly release such references when
yielding execution.
We also need to release the process lock when donating.
When a process crashes, we generate a coredump file and write it in
/tmp/coredumps/.
The coredump file is an ELF file of type ET_CORE.
It contains a segment for every userspace memory region of the process,
and an additional PT_NOTE segment that contains the registers state for
each thread, and a additional data about memory regions
(e.g their name).
When the main executable needs an interpreter, we load the requested
interpreter program, and pass to it an open file decsriptor to the main
executable via the auxiliary vector.
Note that we do not allocate a TLS region for the interpreter.
This prevents zombies created by multi-threaded applications and brings
our model back to closer to what other OSs do.
This also means that SIGSTOP needs to halt all threads, and SIGCONT needs
to resume those threads.
Fix some problems with join blocks where the joining thread block
condition was added twice, which lead to a crash when trying to
unblock that condition a second time.
Deferred block condition evaluation by File objects were also not
properly keeping the File object alive, which lead to some random
crashes and corruption problems.
Other problems were caused by the fact that the Queued state didn't
handle signals/interruptions consistently. To solve these issues we
remove this state entirely, along with Thread::wait_on and change
the WaitQueue into a BlockCondition instead.
Also, deliver signals even if there isn't going to be a context switch
to another thread.
Fixes#4336 and #4330
This allows us to use blocking timeouts with either monotonic or
real time for all blockers. Which means that clock_nanosleep()
now also supports CLOCK_REALTIME.
Also, switch alarm() to use CLOCK_REALTIME as per specification.
This changes the Thread::wait_on function to not enable interrupts
upon leaving, which caused some problems with page fault handlers
and in other situations. It may now be called from critical
sections, with interrupts enabled or disabled, and returns to the
same state.
This also requires some fixes to Lock. To aid debugging, a new
define LOCK_DEBUG is added that enables checking for Lock leaks
upon finalization of a Thread.
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.
This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
This adds the ability to pass a pointer to kernel thread/process.
Also add the ability to use a closure as thread function, which
allows passing information to a kernel thread more easily.
Use the TimerQueue to expire blocking operations, which is one less thing
the Scheduler needs to check on every iteration.
Also, add a BlockTimeout class that will automatically handle relative or
absolute timeouts as well as overriding timeouts (e.g. socket timeouts)
more consistently.
Also, rework the TimerQueue class to be able to fire events from
any processor, which requires Timer to be RefCounted. Also allow
creating id-less timers for use by blocking operations.
We should never resume a thread by directly setting it to Running state.
Instead, if a thread was in Running state when stopped, record the state
as Runnable.
Fixes#4150
The time returned by sys$clock_gettime() was not aligned with the delay
calculations in sys$clock_nanosleep(). This patch fixes that by taking
the system's ticks_per_second value into account in both functions.
This patch also removes the need for Thread::sleep_until() and uses
Thread::sleep() for both absolute and relative sleeps.
This was causing the nesalizer emulator port to sleep for a negative
amount of time at the end of each frame, making it run way too fast.
This makes most operations thread safe, especially so that they
can safely be used in the Kernel. This includes obtaining a strong
reference from a weak reference, which now requires an explicit
call to WeakPtr::strong_ref(). Another major change is that
Weakable::make_weak_ref() may require the explicit target type.
Previously we used reinterpret_cast in WeakPtr, assuming that it
can be properly converted. But WeakPtr does not necessarily have
the knowledge to be able to do this. Instead, we now ask the class
itself to deliver a WeakPtr to the type that we want.
Also, WeakLink is no longer specific to a target type. The reason
for this is that we want to be able to safely convert e.g. WeakPtr<T>
to WeakPtr<U>, and before this we just reinterpret_cast the internal
WeakLink<T> to WeakLink<U>, which is a bold assumption that it would
actually produce the correct code. Instead, WeakLink now operates
on just a raw pointer and we only make those constructors/operators
available if we can verify that it can be safely cast.
In order to guarantee thread safety, we now use the least significant
bit in the pointer for locking purposes. This also means that only
properly aligned pointers can be used.
g_scheduler_lock cannot safely be acquired after Thread::m_lock
because another processor may already hold g_scheduler_lock and wait
for the same Thread::m_lock.
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
The thread joining logic hadn't been updated to account for the subtle
differences introduced by software context switching. This fixes several
race conditions related to thread destruction and joining, as well as
finalization which did not properly account for detached state and the
fact that threads can be joined after termination as long as they're not
detached.
Fixes#3596
There are plenty of places in the kernel that aren't
checking if they actually got their allocation.
This fixes some of them, but definitely not all.
Fixes#3390Fixes#3391
Also, let's make find_one_free_page() return nullptr
if it doesn't get a free index. This stops the kernel
crashing when out of memory and allows memory purging
to take place again.
Fixes#3487
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.