We are not using this for anything and it's just been sitting there
gathering dust for well over a year, so let's stop carrying all this
complexity around for no good reason.
This allows us to 1) let go of the Process when an inode is ref'ing for
ProcFSExposedComponent related reasons, and 2) change our ref/unref
implementation.
This patch changes the semantics of purgeable memory.
- AnonymousVMObject now has a "purgeable" flag. It can only be set when
constructing the object. (Previously, all anonymous memory was
effectively purgeable.)
- AnonymousVMObject now has a "volatile" flag. It covers the entire
range of physical pages. (Previously, we tracked ranges of volatile
pages, effectively making it a page-level concept.)
- Non-volatile objects maintain a physical page reservation via the
committed pages mechanism, to ensure full coverage for page faults.
- When an object is made volatile, it relinquishes any unused committed
pages immediately. If later made non-volatile again, we then attempt
to make a new committed pages reservation. If this fails, we return
ENOMEM to userspace.
mmap() now creates purgeable objects if passed the MAP_PURGEABLE option
together with MAP_ANONYMOUS. anon_create() memory is always purgeable.
In case we are about to delete the PID directory, we clear the Process
pointer. If someone still holds a reference to the PID directory (by
opening it), we still need to delete the process, but we can't delete
the directory, so we will keep it alive, but any operation on it will
fail by propogating the error to userspace about that the Process was
deleted and therefore there's no meaning to trying to do operations on
the directory.
Fixes#8576.
Now we use WeakPtrs to break Ref-counting cycle. Also, we call the
prepare_for_deletion method to ensure deleted objects are ready for
deletion. This is necessary to ensure we don't keep dead processes,
which would become zombies.
In addition to that, add some debug prints to aid debug in the future.
Instead of using one file for the entire "backend" of the ProcFS data
and metadata, we could split that file into two files that represent
2 logical chunks of the ProcFS exposed objects:
1. Global and inter-process information. This includes all fixed data in
the root folder of the ProcFS, networking information and the bus
folder.
2. Per-process information. This includes all dynamic data about a
process that resides in the /proc/PID/ folder.
This change makes it more easier to read the code and to change it,
hence we do it although there's no technical benefit from it now :)