Instead of blindly resetting every AHCI port, let's just reset only the
controller by default. The user can still request to reset everything
with a new kernel boot argument called ahci_reset_mode which is set
by default to "controller", so the code will only invoke an HBA reset.
This kernel boot argument can be set to 3 different values:
1. "controller" - reset the HBA and skip resetting AHCI ports
2. "none" - don't reset anything, so we rely on the firmware to
initialize the AHCI HBA and ports for us.
3. "complete" - reset the AHCI HBA and ports.
This class is used in the AHCI code to handle a big request of
read/write to the disk. If we happen to encounter such request,
we will get the needed amount of physical pages from the
already-allocated physical pages in AHCIPort, and with that we
will create a ScatterList that will create a Region that maps
all of these pages in a contiguous virtual memory range.
Then, we could easily copy to/from this range, before and after
calling the operation on the StorageDevice as needed with
read or write operations.
The hierarchy is AHCIController, AHCIPortHandler, AHCIPort and
SATADiskDevice. Each AHCIController has at least one AHCIPortHandler.
An AHCIPortHandler is an interrupt handler that takes care of
enumeration of handled AHCI ports when an interrupt occurs. Each
AHCIPort takes care of one SATADiskDevice, and later on we can add
support for Port multiplier.
When we implement support of Message signalled interrupts, we can spawn
many AHCIPortHandlers, and allow each one of them to be responsible for
a set of AHCIPorts.