This patch modifies InodeWatcher to switch to a one watcher, multiple
watches architecture. The following changes have been made:
- The watch_file syscall is removed, and in its place the
create_iwatcher, iwatcher_add_watch and iwatcher_remove_watch calls
have been added.
- InodeWatcher now holds multiple WatchDescriptions for each file that
is being watched.
- The InodeWatcher file descriptor can be read from to receive events on
all watched files.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
The error handling in all these cases was still using the old style
negative values to indicate errors. We have a nicer solution for this
now with KResultOr<T>. This change switches the interface and then all
implementers to use the new style.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
As it turns out, Dr. POSIX doesn't require that post-mmap() changes
to a file are reflected in the memory mappings. So we don't actually
have to care about the file size changing (or the contents.)
IIUC, as long as all the MAP_SHARED mappings that refer to the same
inode are in sync, we're good.
This means that VMObjects don't need resizing capabilities. I'm sure
there are ways we can take advantage of this fact.
When ProcFS could no longer allocate KBuffer objects to serve calls to
read, it would just return 0, indicating EOF. This then triggered
parsing errors because code assumed it read the file.
Because read isn't supposed to return ENOMEM, change ProcFS to populate
the file data upon file open or seek to the beginning. This also means
that calls to open can now return ENOMEM if needed. This allows the
caller to either be able to successfully open the file and read it, or
fail to open it in the first place.
This makes most operations thread safe, especially so that they
can safely be used in the Kernel. This includes obtaining a strong
reference from a weak reference, which now requires an explicit
call to WeakPtr::strong_ref(). Another major change is that
Weakable::make_weak_ref() may require the explicit target type.
Previously we used reinterpret_cast in WeakPtr, assuming that it
can be properly converted. But WeakPtr does not necessarily have
the knowledge to be able to do this. Instead, we now ask the class
itself to deliver a WeakPtr to the type that we want.
Also, WeakLink is no longer specific to a target type. The reason
for this is that we want to be able to safely convert e.g. WeakPtr<T>
to WeakPtr<U>, and before this we just reinterpret_cast the internal
WeakLink<T> to WeakLink<U>, which is a bold assumption that it would
actually produce the correct code. Instead, WeakLink now operates
on just a raw pointer and we only make those constructors/operators
available if we can verify that it can be safely cast.
In order to guarantee thread safety, we now use the least significant
bit in the pointer for locking purposes. This also means that only
properly aligned pointers can be used.
First of all, this fixes a dumb info leak where we'd write kernel heap
addresses (StringImpl*) into userspace memory when reading a watcher.
Instead of trying to pass names to userspace, we now simply pass the
child inode index. Nothing in userspace makes use of this yet anyway,
so it's not like we're breaking anything. We'll see how this evolves.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Unlike DirectoryEntry (which is used when constructing directories),
DirectoryEntryView does not manage storage for file names. Names are
just StringViews.
This is much more suited to the directory traversal API and makes
it easier to implement this in file system classes since they no
longer need to create temporary name copies while traversing.
This would have caused an issue later when we enable -Wmissing-declarations, as
the compiler didn't see that Kernel::all_inodes() was being used elsewhere, too.
Also, this means that if the type changes later, there's not going to be weird
run-time issues, but rather a nice type error during compile time.
Certain implementations of Inode::directory_entry_count were calling
functions which returned errors, but had no way of surfacing them.
Switch the return type to KResultOr<size_t> and start observing these
error paths.
These APIs were clearly modeled after Ext2FS internals, and make perfect sense
in Ext2FS context. The new APIs are more generic, and map better to the
semantics exported to the userspace, where inode identifiers only appear in
stat() and readdir() output, but never in any input.
This will also hopefully reduce the potential for races (see commit c44b4d61f3).
Lastly, this makes it way more viable to implement a filesystem that only
synthesizes its inodes lazily when queried, and destroys them when they are no
longer in use. With inode identifiers being used to reference inodes, the only
choice for such a filesystem is to persist any inode it has given out the
identifier for, because it might be queried at any later time. With direct
references to inodes, the filesystem will know when the last reference is
dropped and the inode can be safely destroyed.
Allow file system implementation to return meaningful error codes to
callers of the FileDescription::read_entire_file(). This allows both
Process::sys$readlink() and Process::sys$module_load() to return more
detailed errors to the user.
Previously this API would return an InodeIdentifier, which meant that
there was a race in path resolution where an inode could be unlinked
in between finding the InodeIdentifier for a path component, and
actually resolving that to an Inode object.
Attaching a test that would quickly trip an assertion before.
Test: Kernel/path-resolution-race.cpp
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Symlink resolution is now a virtual method on an inode,
Inode::resolve_as_symlink(). The default implementation just reads the stored
inode contents, treats them as a path and calls through to VFS::resolve_path().
This will let us support other, magical files that appear to be plain old
symlinks but resolve to something else. This is particularly useful for ProcFS.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)