FileHandle gets a hasDataAvailableForRead() getter.
If this returns true in sys$read(), the task will block(BlockedRead) + yield.
The fd blocked on is stored in Task::m_fdBlockedOnRead.
The scheduler then looks at the state of that fd during the unblock phase.
This makes "sh" restful. :^)
There's still some problem with the kernel not surviving the colonel task
getting scheduled. I need to figure that out and fix it.
It's implemented as a separate process. How cute is that.
Tasks now have a current working directory. Spawned tasks inherit their
parent task's working directory.
Currently everyone just uses "/" as there's no way to chdir().
I added a dead-simple malloc that only allows allocations < 4096 bytes.
It just forwards the request to mmap() every time.
I also added simplified versions of opendir() and readdir().
Add a separate lock to protect the VFS. I think this might be a good idea.
I'm not sure it's a good approach though. I'll fiddle with it as I go along.
It's really fun to figure out all these things on my own.
- Turn Keyboard into a CharacterDevice (85,1) at /dev/keyboard.
- Implement MM::unmapRegionsForTask() and MM::unmapRegion()
- Save SS correctly on interrupt.
- Add a simple Spawn syscall for launching another process.
- Move a bunch of IO syscall debug output behind DEBUG_IO.
- Have ASSERT do a "cli" immediately when failing.
This makes the output look proper every time.
- Implement a bunch of syscalls in LibC.
- Add a simple shell ("sh"). All it can do now is read a line
of text from /dev/keyboard and then try launching the specified
executable by calling spawn().
There are definitely bugs in here, but we're moving on forward.
- More work on funneling console output through Console.
- init() now breaks off into a separate task ASAP.
- ..this leaves the "colonel" task as a simple hlt idle loop.
- Mask all IRQs on startup (except IRQ2 for slave passthru)
- Fix underallocation bug in Task::allocateRegion().
- Remember how many times each Task has been scheduled.
The panel and scheduling banner are disabled until I get things
working nicely in the (brave) new Console world.
This way subclasses only have to implement readBlock() and writeBlock().
read() and write() require that the offset and length are both divisible
by the blockSize().
BlockDevice was the wrong name for this abstraction, since a block device
is a type of file in a unix system, and we should use that name for that
concept in the fs implementation.