You're never gonna be right 100% of the time when guessing how much buffer
space you need. This avoids having to make that type of decision in a bunch
of cases. :^)
Only booleans are supported at first. More types can be added easily.
Use this to add /proc/sys/wm_flash_flush which when enabled flashes pending
screen flush rects in yellow before they happen.
Okay, now ProcFS doesn't crash due to the crappy buffer size estimates
not really working out. This thing has dogshit performance and I will
fix that separately.
The old approach only worked because of an overpermissive accident.
There's now a concept of supervisor physical pages that can be allocated.
They all sit in the low 4 MB of physical memory and are identity mapped,
shared between all processes, and only ring 0 can access them.
Process page directories can now actually be freed. This could definitely
be implemented in a nicer, less wasteful way, but this works for now.
The spawn stress test can now run for a lot longer but eventually dies
due to kmalloc running out of memory.
Also use a simple array of { dword, const char* } for the KSyms and put the
whole shebang in kmalloc_eternal() memory. This was a fugly source of
kmalloc perma-frag.
Use a little template magic to have Retainable::release() call out to
T::will_be_destroyed() if such a function exists before actually calling
the destructor. This gives us full access to virtual functions in the
pre-destruction code.
mmap() will now map uncommitted pages that get allocated and zeroed upon the
first access. I also made /proc/PID/vm show number of "committed" bytes in
each region. This is so cool! :^)
This is really sweet! :^) The four instances of /bin/sh spawned at
startup now share their read-only text pages.
There are problems and limitations here, and plenty of room for
improvement. But it kinda works.
sys$fork() now clones all writable regions with per-page COW bits.
The pages are then mapped read-only and we handle a PF by COWing the pages.
This is quite delightful. Obviously there's lots of work to do still,
and it needs better data structures, but the general concept works.
This turned out way better than the old code. ELF loading is now quite
straightforward, and we don't need the weird concept of subregions anymore.
Next step is to respect the is_writable flag.
We no longer disable interrupts around the whole affair.
Since MM manages per-process data structures, this works quite smoothly now.
Only procfs had to be tweaked with an InterruptDisabler.