If we try to align a number above 0xfffff000 to the next multiple of
the page size (4 KiB), it would wrap around to 0. This is most likely
never what we want, so let's assert if that happens.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
We now have PrivateInodeVMObject and SharedInodeVMObject, corresponding
to MAP_PRIVATE and MAP_SHARED respectively.
Note that PrivateInodeVMObject is not used yet.
It's now an error to sys$mmap() a file as writable if it's currently
mapped executable by anyone else.
It's also an error to sys$execve() a file that's currently mapped
writable by anyone else.
This fixes a race condition vulnerability where one program could make
modifications to an executable while another process was in the kernel,
in the middle of exec'ing the same executable.
Test: Kernel/elf-execve-mmap-race.cpp
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Inode::size() may try to take a lock, so we can't be calling it with
interrupts disabled.
This fixes a kernel hang when trying to execute a binary in a TmpFS.
This is memory that's loaded from an inode (file) but not modified in
memory, so still identical to what's on disk. This kind of memory can
be freed and reloaded transparently from disk if needed.
Dirty private memory is all memory in non-inode-backed mappings that's
process-private, meaning it's not shared with any other process.
This patch exposes that number via SystemMonitor, giving us an idea of
how much memory each process is responsible for all on its own.
Remove the global hash tables and replace them with InlineLinkedLists.
This significantly reduces the kernel heap pressure from doing many
small mmap()'s.
This makes VMObject 8 bytes smaller since we can use the array size as
the page count.
The size() is now also computed from the page count instead of being
a separate value. This makes sizes always be a multiple of PAGE_SIZE,
which is sane.
InodeVMObject is a VMObject with an underlying Inode in the filesystem.
AnonymousVMObject has no Inode.
I'm happy that InodeVMObject::inode() can now return Inode& instead of
VMObject::inode() return Inode*. :^)