The whole concept of Jails was far more complicated than I actually want
it to be, so let's reduce the complexity of how it works from now on.
Please note that we always leaked the attach count of a Jail object in
the fork syscall if it failed midway.
Instead, we should have attach to the jail just before registering the
new Process, so we don't need to worry about unsuccessful Process
creation.
The reduction of complexity in regard to jails means that instead of
relying on jails to provide PID isolation, we could simplify the whole
idea of them to be a simple SetOnce, and let the ProcessList (now called
ScopedProcessList) to be responsible for this type of isolation.
Therefore, we apply the following changes to do so:
- We make the Jail concept no longer a class of its own. Instead, we
simplify the idea of being jailed to a simple ProtectedValues boolean
flag. This means that we no longer check of matching jail pointers
anywhere in the Kernel code.
To set a process as jailed, a new prctl option was added to set a
Kernel SetOnce boolean flag (so it cannot change ever again).
- We provide Process & Thread methods to iterate over process lists.
A process can either iterate on the global process list, or if it's
attached to a scoped process list, then only over that list.
This essentially replaces the need of checking the Jail pointer of a
process when iterating over process lists.
This removes the allocate_tls syscall and adds an archctl option to set
the fs_base for the current thread on x86-64, since you can't set that
register from userspace. enter_thread_context loads the fs_base for the
next thread on each context switch.
This also moves tpidr_el0 (the thread pointer register on AArch64) to
the register state, so it gets properly saved/restored on context
switches.
The userspace TLS allocation code is kept pretty similar to the original
kernel TLS code, aside from a couple of style changes.
We also have to add a new argument "tls_pointer" to
SC_create_thread_params, as we otherwise can't prevent race conditions
between setting the thread pointer register and signal handling code
that might be triggered before the thread pointer was set, which could
use TLS.
These changes are compatible with clang-format 16 and will be mandatory
when we eventually bump clang-format version. So, since there are no
real downsides, let's commit them now.
While this clutters Process.cpp a tiny bit, I feel that it's worth it:
- 2x speed on the kcov_loop benchmark. Likely more during fuzzing.
- Overall code complexity is going down with this change.
- By reducing the code reachable from __sanitizer_cov_trace_pc code,
we can now instrument more code.
Sticking this to the function source has multiple benefits:
- We instrument more code, by not excluding entire files.
- NO_SANITIZE_COVERAGE can be used in Header files.
- Keeping the info with the source code, means if a function or
file is moved around, the NO_SANITIZE_COVERAGE moves with it.
This easily led to kernel deadlocks if the stopped thread held an
important global mutex (like the disk cache lock) while blocking.
Resolve this by ensuring stopped threads have a chance to return to the
userland boundary before actually stopping.
Since the POSIX sigaltstack manpage suggests allocating the stack
region using malloc(), and many heap implementations (including ours)
store heap chunk metadata in memory just before the vended pointer,
we would end up zeroing the metadata, leading to various crashes.
We should consider whether the selected Thread is within the same jail
or not.
Therefore let's make it clear to callers with jail semantics if a called
method checks if the desired Thread object is within the same jail.
As for Thread::for_each_* methods, currently nothing in the kernel
codebase needs iteration with consideration for jails, so the old
Thread::for_each* were simply renamed to include "ignoring_jails" suffix
in their names.
Instead, use the FixedCharBuffer class to ensure we always use a static
buffer storage for these names. This ensures that if a Process or a
Thread were created, there's a guarantee that setting a new name will
never fail, as only copying of strings should be done to that static
storage.
The limits which are set are 32 characters for processes' names and 64
characters for thread names - this is because threads' names could be
more verbose than processes' names.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.