This avoids allocations in the VMObject constructor. The number of
inline elements was determined empirically and covers most common cases
including LibC malloc.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This may seem like a no-op change, however it shrinks down the Kernel by a bit:
.text -432
.unmap_after_init -60
.data -480
.debug_info -673
.debug_aranges 8
.debug_ranges -232
.debug_line -558
.debug_str -308
.debug_frame -40
With '= default', the compiler can do more inlining, hence the savings.
I intentionally omitted some opportunities for '= default', because they
would increase the Kernel size.
This adds support for FUTEX_WAKE_OP, FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET,
FUTEX_REQUEUE, and FUTEX_CMP_REQUEUE, as well well as global and private
futex and absolute/relative timeouts against the appropriate clock. This
also changes the implementation so that kernel resources are only used when
a thread is blocked on a futex.
Global futexes are implemented as offsets in VMObjects, so that different
processes can share a futex against the same VMObject despite potentially
being mapped at different virtual addresses.
If we remap pages (e.g. lazy allocation) inside a VMObject that is
shared among more than one region, broadcast it to any other region
that may be mapping the same page.
By designating a committed page pool we can guarantee to have physical
pages available for lazy allocation in mappings. However, when forking
we will overcommit. The assumption is that worst-case it's better for
the fork to die due to insufficient physical memory on COW access than
the parent that created the region. If a fork wants to ensure that all
memory is available (trigger a commit) then it can use madvise.
This also means that fork now can gracefully fail if we don't have
enough physical pages available.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
It's now possible to get purgeable memory by using mmap(MAP_PURGEABLE).
Purgeable memory has a "volatile" flag that can be set using madvise():
- madvise(..., MADV_SET_VOLATILE)
- madvise(..., MADV_SET_NONVOLATILE)
When in the "volatile" state, the kernel may take away the underlying
physical memory pages at any time, without notifying the owner.
This gives you a guilt discount when caching very large things. :^)
Setting a purgeable region to non-volatile will return whether or not
the memory has been taken away by the kernel while being volatile.
Basically, if madvise(..., MADV_SET_NONVOLATILE) returns 1, that means
the memory was purged while volatile, and whatever was in that piece
of memory needs to be reconstructed before use.
After the page fault handler has found the region in which the fault
occurred, do the rest of the work in the region itself.
This patch also makes all fault types consistently crash the process
if a new page is needed but we're all out of pages.
Using a HashTable to track "all instances of Foo" is only useful if we
actually need to look up entries by some kind of index. And since they
are HashTable (not HashMap), the pointer *is* the index.
Since we have the pointer, we can just use it directly. Duh.
This increase sizeof(VMObject) by two pointers, but removes a global
table that had an entry for every VMObject, where the cost was higher.
It also avoids all the general hash tabling business when creating or
destroying VMObjects. Generally we should do more of this. :^)
This makes VMObject 8 bytes smaller since we can use the array size as
the page count.
The size() is now also computed from the page count instead of being
a separate value. This makes sizes always be a multiple of PAGE_SIZE,
which is sane.
InodeVMObject is a VMObject with an underlying Inode in the filesystem.
AnonymousVMObject has no Inode.
I'm happy that InodeVMObject::inode() can now return Inode& instead of
VMObject::inode() return Inode*. :^)
This wasn't really thought-through, I was just trying anything to see
if it would make WindowServer faster. This doesn't seem to make much of
a difference either way, so let's just not do it for now.
It's easy to bring back if we think we need it in the future.
The VMObject name was always either the owning region's name, or the
absolute path of the underlying inode.
We can reconstitute this information if wanted, no need to keep copies
of these strings around.
String&& is just not very practical. Also return const String& when the
returned string is a member variable. The call site is free to make a copy
if he wants, but otherwise we can avoid the retain count churn.
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.