This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
obtain any lock rank just via the template parameter. It was not
previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
wanted in the first place (or made use of). Locks randomly changing
their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
taken in the right order (with the right lock rank checking
implementation) as rank information is fully statically known.
This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
This commit reached that goal of "safely discarding" a filesystem by
doing the following:
1. Stop using the s_file_system_map HashMap as it was an unsafe measure
to access pointers of FileSystems. Instead, make sure to register all
FileSystems at the VFS layer, with an IntrusiveList, to avoid problems
related to OOM conditions.
2. Make sure to cleanly remove the DiskCache object from a BlockBased
filesystem, so the destructor of such object will not need to do that in
the destruction point.
3. For ext2 filesystems, don't cache the root inode at m_inode_cache
HashMap. The reason for this is that when unmounting an ext2 filesystem,
we lookup at the cache to see if there's a reference to a cached inode
and if that's the case, we fail with EBUSY. If we keep the m_root_inode
also being referenced at the m_inode_cache map, we have 2 references to
that object, which will lead to fail with EBUSY. Also, it's much simpler
to always ask for a root inode and get it immediately from m_root_inode,
instead of looking up the cache for that inode.
The idea is to enable mounting FileSystem objects across multiple mounts
in contrast to what happened until now - each mount has its own unique
FileSystem object being attached to it.
Considering a situation of mounting a block device at 2 different mount
points at in system, there were a couple of critical flaws due to how
the previous "design" worked:
1. BlockBasedFileSystem(s) that pointed to the same actual device had a
separate DiskCache object being attached to them. Because both instances
were not synchronized by any means, corruption of the filesystem is most
likely achieveable by a simple cache flush of either of the instances.
2. For superblock-oriented filesystems (such as the ext2 filesystem),
lack of synchronization between both instances can lead to severe
corruption in the superblock, which could render the entire filesystem
unusable.
3. Flags of a specific filesystem implementation (for example, with xfs
on Linux, one can instruct to mount it with the discard option) must be
honored across multiple mounts, to ensure expected behavior against a
particular filesystem.
This patch put the foundations to start fix the issues mentioned above.
However, there are still major issues to solve, so this is only a start.
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
... In files included from Kernel/Thread.cpp or Kernel/Process.cpp
Some places the warning is suppressed, because we do not want a const
object do have non-const access to the returned sub-object.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
This commit moves the KResult and KResultOr objects to Kernel/API to
signify that they may now be freely used by userspace code at points
where a syscall-related error result is to be expected. It also exposes
KResult and KResultOr to the global namespace to make it nicer to use
for userspace code.
We often get queried for the root inode, and it will always be cached
in memory anyway, so let's make Ext2FS::root_inode() fast by keeping
the root inode in a dedicated member variable.
Problem:
- `static` variables consume memory and sometimes are less
optimizable.
- `static const` variables can be `constexpr`, usually.
- `static` function-local variables require an initialization check
every time the function is run.
Solution:
- If a global `static` variable is only used in a single function then
move it into the function and make it non-`static` and `constexpr`.
- Make all global `static` variables `constexpr` instead of `const`.
- Change function-local `static const[expr]` variables to be just
`constexpr`.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
A change introduced in 5e01234 made it the resposibility of each
filesystem to have the file types returned from
'traverse_as_directory' match up with the DT_* types.
However, this caused corruption of the Ext2FS file format because
the Ext2FS uses 'traverse_as_directory' internally when manipulating
the file system. The result was a mixture between EXT2_FT_* and DT_*
file types in the internal Ext2FS structures.
Starting with this commit, the conversion from internal filesystem file
types to the user facing DT_* types happens at a later stage,
in the 'FileDescription::get_dir_entries' function which is directly
used by sys$get_dir_entries.
Unlike DirectoryEntry (which is used when constructing directories),
DirectoryEntryView does not manage storage for file names. Names are
just StringViews.
This is much more suited to the directory traversal API and makes
it easier to implement this in file system classes since they no
longer need to create temporary name copies while traversing.
These APIs were clearly modeled after Ext2FS internals, and make perfect sense
in Ext2FS context. The new APIs are more generic, and map better to the
semantics exported to the userspace, where inode identifiers only appear in
stat() and readdir() output, but never in any input.
This will also hopefully reduce the potential for races (see commit c44b4d61f3).
Lastly, this makes it way more viable to implement a filesystem that only
synthesizes its inodes lazily when queried, and destroys them when they are no
longer in use. With inode identifiers being used to reference inodes, the only
choice for such a filesystem is to persist any inode it has given out the
identifier for, because it might be queried at any later time. With direct
references to inodes, the filesystem will know when the last reference is
dropped and the inode can be safely destroyed.
In contrast to the previous patchset that was reverted, this time we use
a "special" method to access a file with block size of 512 bytes (like
a harddrive essentially).
This was only used by HashTable::dump() which I used when doing the
first HashTable implementation. Removing this allows us to also remove
most includes of <AK/kstdio.h>.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
If we're creating something that should have a different owner than the
current process's UID/GID, we need to plumb that all the way through
VFS down to the FS functions.
Currently only Ext2FS and TmpFS supports InodeWatchers. We now fail
with ENOTSUPP if watch_file() is called on e.g ProcFS.
This fixes an issue with FileManager chewing up all the CPU when /proc
was opened. Watchers don't keep the watched Inode open, and when they
close, the watcher FD will EOF.
Since nothing else kept /proc open in FileManager, the watchers created
for it would EOF immediately, causing a refresh over and over.
Fixes#879.