Certain implementations of Inode::directory_entry_count were calling
functions which returned errors, but had no way of surfacing them.
Switch the return type to KResultOr<size_t> and start observing these
error paths.
FileBackedFileSystem is one that's backed by (mounted from) a file, in other
words one that has a "source" of the mount; that doesn't mean it deals in
blocks. The hierarchy now becomes:
* FS
* ProcFS
* DevPtsFS
* TmpFS
* FileBackedFS
* (future) Plan9FS
* BlockBasedFS
* Ext2FS
These APIs were clearly modeled after Ext2FS internals, and make perfect sense
in Ext2FS context. The new APIs are more generic, and map better to the
semantics exported to the userspace, where inode identifiers only appear in
stat() and readdir() output, but never in any input.
This will also hopefully reduce the potential for races (see commit c44b4d61f3).
Lastly, this makes it way more viable to implement a filesystem that only
synthesizes its inodes lazily when queried, and destroys them when they are no
longer in use. With inode identifiers being used to reference inodes, the only
choice for such a filesystem is to persist any inode it has given out the
identifier for, because it might be queried at any later time. With direct
references to inodes, the filesystem will know when the last reference is
dropped and the inode can be safely destroyed.
Allow file system implementation to return meaningful error codes to
callers of the FileDescription::read_entire_file(). This allows both
Process::sys$readlink() and Process::sys$module_load() to return more
detailed errors to the user.
read_block() and write_block() now accept the count (how many bytes to read
or write) and offset (where in the block to start; defaults to 0). Using these
new APIs, we can avoid doing copies between intermediary buffers in a lot more
cases. Hopefully this improves performance or something.
In contrast to the previous patchset that was reverted, this time we use
a "special" method to access a file with block size of 512 bytes (like
a harddrive essentially).
Previously this API would return an InodeIdentifier, which meant that
there was a race in path resolution where an inode could be unlinked
in between finding the InodeIdentifier for a path component, and
actually resolving that to an Inode object.
Attaching a test that would quickly trip an assertion before.
Test: Kernel/path-resolution-race.cpp
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
If we're creating something that should have a different owner than the
current process's UID/GID, we need to plumb that all the way through
VFS down to the FS functions.
Currently only Ext2FS and TmpFS supports InodeWatchers. We now fail
with ENOTSUPP if watch_file() is called on e.g ProcFS.
This fixes an issue with FileManager chewing up all the CPU when /proc
was opened. Watchers don't keep the watched Inode open, and when they
close, the watcher FD will EOF.
Since nothing else kept /proc open in FileManager, the watchers created
for it would EOF immediately, causing a refresh over and over.
Fixes#879.
Also cache the block group descriptor table in a KBuffer on file system
initialization, instead of on first access.
This reduces pressure on the kmalloc heap somewhat.
If there are not enough free blocks in the filesystem to accomodate
growing an Inode, we should fail with ENOSPC before even starting to
allocate blocks.
Add a simple cache to Ext2FS where we keep block bitmaps along with a
dirty bit. This allows us to coalesce bitmap flushes, giving us a nice
~3x improvement in disk_benchmark write speeds.
Store the cached super block as an ext2_super_block member instead of
caching it in a ByteBuffer and using a casting helper everywhere.
This patch also combines reading/writing of the super block into a
single disk device operation (instead of two.)
This patch overloads Inode::is_directory() with a faster version that
doesn't require instantiating the whole InodeMetadata.
If you have an Ext2FSInode&, calling is_directory() should be instant
since we can just look directly at the raw inode bits.
This way clients are not required to have instantiated ByteBuffers
and can choose whatever memory scheme works best for them.
Also converted some of the Ext2FS code to use stack buffers instead.
1) Off-by-one in block allocation when block size != 1 KB
Due to a quirk in the on-disk layout of ext2, file systems with a block
size of 1 KB have block #1 as their first block, while all others start
on block #0.
2) We had no fallback mechanism when the preferred group was full
We now allocate blocks from the preferred block group as long as it's
possible, and fall back to a simple scan through all groups when the
preferred one is full.
It is now possible to unmount file systems from the VFS via `umount`.
It works via looking up the `fsid` of the filesystem from the `Inode`'s
metatdata so I'm not sure how fragile it is. It seems to work for now
though as something to get us going.
This is obviously more readable. If we ever run into a situation where
ref count churn is actually causing trouble in the future, we can deal with
it then. For now, let's keep it simple. :^)
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.