Font now uses the same in-memory format as the font files we have on disk.
This allows us to simply mmap() the font files and not use any additional
memory for them. Very cool! :^)
Hacking on this exposed a bug in file-backed VMObjects where the first client
to instantiate a VMObject for a specific inode also got to decide its size.
Since file-backed VMObjects always have the same size as the underlying file,
this made no sense, so I removed the ability to even set a size in that case.
Previously, calling Region::commit() would make sure to allocate any missing
physical pages, but they would contain uninitialized data. This was very
obvious when allocating GraphicsBitmaps as they would have garbage pixels
rather than being filled with black.
The MM quickmap mechanism didn't work when operating on a non-active page
directory (which happens when we're in the middle of exec, for example.)
This patch changes quickmap to reside in the shared kernel page directory.
Also added some missing clobber lists to inline asm that I stumbled on.
Pass the file name in a stack-allocated buffer instead of using an AK::String
when iterating directories. This dramatically reduces the amount of cycles
spent traversing the filesystem.
The ELF loader was doing huge amounts of unnecessary work.
Got rid of the "export symbols" and relocation passes since we don't need them.
They were useful things when bringing up the ELF loading code.
Also added a simple TSC-based Stopwatch RAII thingy to help debug performance issues.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
sys$fork() now clones all writable regions with per-page COW bits.
The pages are then mapped read-only and we handle a PF by COWing the pages.
This is quite delightful. Obviously there's lots of work to do still,
and it needs better data structures, but the general concept works.
The naive spinlock was not nearly enough to protect kmalloc from
reentrancy problems.
I don't want to deal with coming up with a fancy lock for kmalloc
right now, so I made an InterruptDisabler thingy instead.
It does CLI and then STI iff interrupts were previously enabled.
- Turn Keyboard into a CharacterDevice (85,1) at /dev/keyboard.
- Implement MM::unmapRegionsForTask() and MM::unmapRegion()
- Save SS correctly on interrupt.
- Add a simple Spawn syscall for launching another process.
- Move a bunch of IO syscall debug output behind DEBUG_IO.
- Have ASSERT do a "cli" immediately when failing.
This makes the output look proper every time.
- Implement a bunch of syscalls in LibC.
- Add a simple shell ("sh"). All it can do now is read a line
of text from /dev/keyboard and then try launching the specified
executable by calling spawn().
There are definitely bugs in here, but we're moving on forward.
This leaves interrupts enabled while we're in the kernel, which is
precisely what we want.
This uncovered a horrendous problem with kernel tasks silently
overflowing their stacks. For now I've simply increased the stack size
but I need a more MMU-y solution for this eventually.