As required by posix. Also rename Thread::clear_signals to
Thread::reset_signals_for_exec since it doesn't actually clear any
pending signals, but rather does execve related signal book-keeping.
Returning 'result.error().code()' erroneously creates an
ErrorOr<FlatPtr> of the positive errno code, which breaks our
error-returning convention.
This seems to be due to a forgotten minus-sign during the refactoring in
9e51e295cf. This latent bug was never
discovered, because currently the error-handling paths are rarely
exercised.
Also, remove incomplete, superfluous check.
Incomplete, because only the byte at the provided address was checked;
this misses the last bytes of the "jerk page".
Superfluous, because it is already correctly checked by peek_user_data
(which calls copy_from_user).
The caller/tracer should not typically attempt to read non-userspace
addresses, we don't need to "hot-path" it either.
Since we're iterating over multiple regions that interesect with the
requested range, just one of them having the requested access flags
is not enough to finish the syscall early.
The advices are almost always exclusive of one another, and while POSIX
does not define madvise, most other unix-like and *BSD systems also only
accept a singular value per call.
We were returning `int`s from two functions that caused `ErrorOr` to
not recognize the error codes as a special case. For example,
`ETIMEDOUT` was returned as the positive number 66 resulting in all
kinds of defective behavior.
As a result, SDL2's timer subsystem was not working at all, since the
`SDL_MUTEX_TIMEDOUT` value was never returned.
This allows userspace to trigger a full (FIXME) flush of a shared file
mapping to disk. We iterate over all the mapped pages in the VMObject
and write them out to the underlying inode, one by one. This is rather
naive, and there's lots of room for improvement.
Note that shared file mappings are currently not possible since mmap()
returns ENOTSUP for PROT_WRITE+MAP_SHARED. That restriction will be
removed in a subsequent commit. :^)
This feels like it was a refactor transition kind of conversion. The
places that were relying on it can easily be changed to explicitly ask
for the ptr() or a new vaddr() method on Userspace<T*>.
FlatPtr can still implicitly convert to Userspace<T> because the
constructor is not explicit, but there's quite a few more places that
are relying on that conversion.
A series of refactors changed Threads to always have a name, and to
store their name as a KString. Before the refactors a StringBuilder was
used to format the default thread name for a non-main thread, but it is
since unused. Remove it and the AK/String related header includes from
the thread syscall implementation file.
`off_t` is a 64-bit signed integer, so passing it in a register on i686
is not the best idea.
This fix gets us one step closer to making the LLVM port work.
Instead of signalling allocation failure with a bool return value
(false), we now use ErrorOr<void> and return ENOMEM as appropriate.
This allows us to use TRY() and MUST() with Vector. :^)
In particular, fstatvfs used to assume that a file that was earlier
opened using some path will forever be at that path. This is wrong, and
in the meantime new mounts and new filesystems could take up the
filename or directories, leading to a completely inaccurate result.
This commit improves the situation:
- All filesystem information is now always accurate.
- The mount flags *might* be erroneously zero, if the custody for the
open file is not available. I don't know when that might happen, but
it is definitely not the typical case.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
Found due to smelly code in InodeFile::absolute_path.
In particular, this replaces the following misleading methods:
File::absolute_path
This method *never* returns an actual path, and if called on an
InodeFile (which is impossible), it would VERIFY_NOT_REACHED().
OpenFileDescription::try_serialize_absolute_path
OpenFileDescription::absolute_path
These methods do not guarantee to return an actual path (just like the
other method), and just like Custody::absolute_path they do not
guarantee accuracy. In particular, just renaming the method made a
TOCTOU bug obvious.
The new method signatures use KResultOr, just like
try_serialize_absolute_path() already did.
The OpenFileDescription class already offers the necessary functionlity,
so implementing this was only a matter of following the structure for
`read` while handling the additional `offset` argument.
Having these bits of code factored out not only prevents duplication
now, but will also allow us to implement pread without repeating
ourselves (too much).
Values in `ioctl` are given through a pointer, but ioctl's FIONBIO
implementation was interpreting this pointer as an integer directly.
This meant that programs using `ioctl` to set a file descriptor in
blocking mode met with incorrect behavior: they passed a non-null
pointer pointing to a value of 0, but the kernel interpreted the pointer
as a non-zero integer, thus making the file non-blocking.
This commit fixes this behavior by reading the value from the userspace
pointer and using that to set the non-blocking flag on the file
descriptor.
This bug was found while trying to run the openssl tool on serenity,
which used `ioctl` to ensure newly-created sockets are in blocking mode.
SonarCloud flagged this "Code Smell", where we are accessing these
static methods as if they are instance methods. While it is technically
possible, it is very confusing to read when you realize they are static
functions.
Previously, attempting to call sys$waitid on non-child processes
returned ECHILD.
That prevented debugging non-child processes by attaching to them during
runtime (as opposed to forking and debugging the child, which is what
was previously supported).
We now allow calling sys$waitid on a any process that is being traced
by us, even if it's not our child.
This change removes the halt and reboot syscalls, and create a new
mechanism to change the power state of the machine.
Instead of how power state was changed until now, put a SysFS node as
writable only for the superuser, that with a defined value, can result
in either reboot or poweroff.
In the future, a power group can be assigned to this node (which will be
the GroupID responsible for power management).
This opens an opportunity to permit to shutdown/reboot without superuser
permissions, so in the future, a userspace daemon can take control of
this node to perform power management operations without superuser
permissions, if we enforce different UserID/GroupID on that node.
This will somwhat help unify them also under the same SysFS directory in
the commit.
Also, it feels much more like this change reflects the reality that both
ACPI and the BIOS are part of the firmware on x86 computers.