There were a few cases where we could end up logging profiling events
before or after the associated process or thread exists in the profile:
After enabling profiling we might end up with CPU samples before we
had a chance to synthesize process/thread creation events.
After a thread exits we would still log associated kmalloc/kfree
events. Instead we now just ignore those events.
Previously the process' m_profiling flag was ignored for all event
types other than CPU samples.
The kfree tracing code relies on temporarily disabling tracing during
exec. This didn't work for per-process profiles and would instead
panic.
This updates the profiling code so that the m_profiling flag isn't
ignored.
Hook the kernel page fault handler and capture page fault events when
the fault has a current thread attached in TLS. We capture the eip and
ebp so we can unwind the stack and locate which pieces of code are
generating the most page faults.
Co-authored-by: Gunnar Beutner <gbeutner@serenityos.org>
We can lose profiling timer events for a few reasons, for example
disabled interrupts or system slowness. This accounts for lost
time between CPU samples by adding a field lost_samples to each
profiling event which tracks how many samples were lost immediately
preceding the event.
This updates the profiling subsystem to use a separate timer to
trigger CPU sampling. This timer has a higher resolution (1000Hz)
and is independent from the scheduler. At a later time the
resolution could even be made configurable with an argument for
sys$profiling_enable() - but not today.
The current method of emitting performance events requires a bit of
boiler plate at every invocation, as well as having to ignore the
return code which isn't used outside of the perf event syscall. This
change attempts to clean that up by exposing high level API's that
can be used around the code base.