This class as a CharacterDevice really was not useful, because you
couldn't even read from it.
Also, the random number generator interface should be the /dev/random,
so any other interface to get random numbers is generally not a good
idea.
Instead, let's keep this functionality as an entropy source for random
numbers generation, but without exposing a device node.
We now expose the `USBDevice`'s address in the SysFS object. This means
that device addresses are no longer determined by the name of the file
in the `/bus/usb/` directory. This was an incorrect way of determining
device address, as a standard PC can have multiple USB controllers
(and hence multiple buses) that can have overlapping device IDs.
Now that the old PCI::Device was removed, we can complete the PCI
changes by making the PCI::DeviceController to be named PCI::Device.
Really the entire purpose and the distinction between the two was about
interrupts, but since this is no longer a problem, just rename it to
simplify things further.
I created this class a long time ago just to be able to quickly make a
PCI device to also represent an interrupt handler (because PCI devices
have this capability for most devices).
Then after a while I introduced the PCI::DeviceController, which is
really almost the same thing (a PCI device class that has Address member
in it), but is not tied to interrupts so it can have no interrupts, or
spawn interrupt handlers however it wants to seems fit.
However I decided it's time to say goodbye for this class for
a couple of reasons:
1. It made a whole bunch of weird patterns where you had a PCI::Device
and a PCI::DeviceController being used in the topic of implementation,
where originally, they meant to be used mutually exclusively (you
can't and really don't want to use both).
2. We can really make all the classes that inherit from PCI::Device
to inherit from IRQHandler at this point. Later on, when we have MSI
interrupts support, we can go further and untie things even more.
3. It makes it possible to simplify the VirtIO implementation to a great
extent. While this commit almost doesn't change it, future changes
can untangle some complexity in the VirtIO code.
For UHCIController, E1000NetworkAdapter, NE2000NetworkAdapter,
RTL8139NetworkAdapter, RTL8168NetworkAdapter, E1000ENetworkAdapter we
are simply making them to inherit the IRQHandler. This makes some sense,
because the first 3 devices will never support anything besides IRQs.
For the last 2, they might have MSI support, so when we start to utilize
those, we might need to untie these classes from IRQHandler and spawn
IRQHandler(s) or MSIHandler(s) as needed.
The VirtIODevice class is also a case where we currently need to use
both PCI::DeviceController and IRQHandler classes as parents, but it
could also be untied from the latter.
The previous version of this was pretty bad and caused a lot of
odd behevaiour to occur. We now abstract a lot of the allocation
behind a `template`d pool class that handles all of the memory
allocation.
The number of UHCI related files is starting to expand to the point
where it's best if we move this into their own subdirectory. It'll
also make it easier to manage when we decide to add some more
controller types (whenever that may be)
There's no need for generated files in SysFS to tell you their precise
file size when you stat() them.
I noticed when profiling "find /" that we were spending a chunk of time
generating and throwing away SysFS content just so we could tell you
exactly how large it would be. :^)
This makes for nicer handling of errors compared to checking whether a
RefPtr is null. Additionally, this will give way to return different
types of errors in the future.
A hub can technically have up to 255 ports, given that bNbrPorts is a
u8 and the DeviceRemovable field is a VLA to support up to 255 ports.
Source: USB 2.0 Specification Section 11.23.2.1
That means this enum is not going to scale well in terms of size.
Replacing it with a raw u8 allows me to remove the two port assumption
and a cast.
Previously it would create a contiguous AVMO manually and pass it to
MM. This uses supervisor pages that quickly run out as they never get
returned and crash the system.
Instead, use allocate_kernel_region as we're only allocating a page so
it will be contiguous and will be returned when destroyed.
A potentially better solution would be to use a pool of transfers to
avoid all the allocations. This just prevents the system from crashing
within ~5 seconds from the continuous hub polling.
This is a bug that went unnoticed for a long time, so the exposed values
in SysFS PCI device directories were incorrect because the assigned PCI
address was simply the host bridge always.
Also, the bus typing should really be two hexadecimal digits and not 4
digits.
This patch removes KResult::operator int() and deals with the fallout.
This forces a lot of code to be more explicit in its handling of errors,
greatly improving readability.
This removes Pipes dependency on the UHCIController by introducing a
controller base class. This will be used to implement other controllers
such as OHCI.
Additionally, there can be multiple instances of a UHCI controller.
For example, multiple UHCI instances can be required for systems with
EHCI controllers. EHCI relies on using multiple of either UHCI or OHCI
controllers to drive USB 1.x devices.
This means UHCIController can no longer be a singleton. Multiple
instances of it can now be created and passed to the device and then to
the pipe.
To handle finding and creating these instances, USBManagement has been
introduced. It has the same pattern as the other management classes
such as NetworkManagement.
Port2 logic was errantly using `portsc1` registers, meaning that
the port wouldn't be reset properly. In effect, this puts devices
connected to Port2 in an undefined state.
We don't need an entirely separate VMObject subclass to influence the
location of the physical pages.
Instead, we simply allocate enough physically contiguous memory first,
and then pass it to the AnonymousVMObject constructor that takes a span
of physical pages.
Depending on the values it might be difficult to figure out whether a
value is decimal or hexadecimal. So let's make this more obvious. Also
this allows copying and pasting those numbers into GNOME calculator and
probably also other apps which auto-detect the base.
Instead of each PhysicalPage knowing whether it comes from the
supervisor pages or from the user pages, we can just check in both
sets when freeing a page.
It's just a handful of pointer range checks, nothing expensive.