Replace the AK::String used for Region::m_name with a KString.
This seems beneficial across the board, but as a specific data point,
it reduces time spent in sys$set_mmap_name() by ~50% on test-js. :^)
Previously the process' m_profiling flag was ignored for all event
types other than CPU samples.
The kfree tracing code relies on temporarily disabling tracing during
exec. This didn't work for per-process profiles and would instead
panic.
This updates the profiling code so that the m_profiling flag isn't
ignored.
There is a slight race condition in our implementation of write().
We call File::can_write() before attempting to write to it (blocking if
it returns false). If it returns true, we assume that we can write to
the file, and our code assumes that File::write() cannot possibly fail
by being blocked. There is, however, the rare case where another process
writes to the file and prevents further writes in between the call to
Files::can_write() and File::write() in the first process. This would
result in the first process calling File::write() when it cannot be
written to.
We fix this by adding a mechanism for File::can_write() to signal that
it was blocked, making it the responsibilty of File::write() to check
whether it can write and then finally making sys$write() check if the
write failed due to it being blocked.
Unlike accept() the new accept4() system call lets the caller specify
flags for the newly accepted socket file descriptor, such as
SOCK_CLOEXEC and SOCK_NONBLOCK.
Because we don't parse ACPI AML yet, If we are not able to shut down
the machine with "hacky" emulation methods - halt and print this state
to the users so they know they can shutdown the machine by themselves.
By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.
This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).
Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.
There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
Regressed in 8a4cc735b9.
We stopped generating "process created" when enabling profiling,
which led to Profiler getting confused about the missing events.
Previously calls to perf_event() would end up in a process-specific
perfcore file even though global profiling was enabled. This changes
the behavior for perf_event() so that these events are stored into
the global profile instead.
This change looks more involved than it actually is. This simply
reshuffles the previous Process constructor and splits out the
parts which can fail (resource allocation) into separate methods
which can be called from a factory method. The factory is then
used everywhere instead of the constructor.
We were using ELF::Image::section(0) to indicate the "undefined"
section, when what we really wanted was just Optional<Section>.
So let's use Optional instead. :^)
The function fstatat can do the same thing as the stat and lstat
functions. However, it can be passed the file descriptor of a directory
which will be used when as the starting point for relative paths. This
is contrary to stat and lstat which use the current working directory as
the starting for relative paths.
This updates the profiling subsystem to use a separate timer to
trigger CPU sampling. This timer has a higher resolution (1000Hz)
and is independent from the scheduler. At a later time the
resolution could even be made configurable with an argument for
sys$profiling_enable() - but not today.
Modify the API so it's possible to propagate error on OOM failure.
NonnullOwnPtr<T> is not appropriate for the ThreadTracer::create() API,
so switch to OwnPtr<T>, use adopt_own_if_nonnull() to handle creation.
This patch modifies InodeWatcher to switch to a one watcher, multiple
watches architecture. The following changes have been made:
- The watch_file syscall is removed, and in its place the
create_iwatcher, iwatcher_add_watch and iwatcher_remove_watch calls
have been added.
- InodeWatcher now holds multiple WatchDescriptions for each file that
is being watched.
- The InodeWatcher file descriptor can be read from to receive events on
all watched files.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
Previously we'd try to load ELF images which did not have
an interpreter set with an incorrect load offset of 0, i.e. way
outside of the part of the address space where we'd expect either
the dynamic loader or the user's executable to reside.
This fixes the problem by using get_load_offset for both executables
which have an interpreter set and those which don't. Notably this
allows us to actually successfully execute the Loader.so binary:
courage:~ $ /usr/lib/Loader.so
You have invoked `Loader.so'. This is the helper program for programs
that use shared libraries. Special directives embedded in executables
tell the kernel to load this program.
This helper program loads the shared libraries needed by the program,
prepares the program to run, and runs it. You do not need to invoke
this helper program directly.
courage:~ $
The current method of emitting performance events requires a bit of
boiler plate at every invocation, as well as having to ignore the
return code which isn't used outside of the perf event syscall. This
change attempts to clean that up by exposing high level API's that
can be used around the code base.
The fact that current_time can "fail" makes its use a bit awkward.
All callers in the Kernel are trusted besides syscalls, so assert
that they never get there, and make sure all current callers perform
validation of the clock_id with TimeManagement::is_valid_clock_id().
I have fuzzed this change locally for a bit to make sure I didn't
miss any obvious regression.
The error handling in all these cases was still using the old style
negative values to indicate errors. We have a nicer solution for this
now with KResultOr<T>. This change switches the interface and then all
implementers to use the new style.
Previously, TLS data was always zero-initialized.
To support initializing the values of TLS data, sys$allocate_tls now
receives a buffer with the desired initial data, and copies it to the
master TLS region of the process.
The DynamicLinker gathers the initial TLS image and passes it to
sys$allocate_tls.
We also now require the size passed to sys$allocate_tls to be
page-aligned, to make things easier. Note that this doesn't waste memory
as the TLS data has to be allocated in separate pages anyway.
For example Linux accepts an additional argument for flags in accept4()
that let the user specify what flags they want. However, by default
accept() should not inherit those flags from the listener socket.
Theoretically the append should never fail as we have in-line storage
of FD_SETSIZE, which should always be enough. However I'm planning on
removing the non-try variants of AK::Vector when compiling in kernel
mode in the future, so this will need to go eventually. I suppose it
also protects against some unforeseen bug where we we can append more
than FD_SETSIZE items.
Theoretically the append should never fail as we have in-line storage
of 2, which should be enough. However I'm planning on removing the
non-try variants of AK::Vector when compiling in kernel mode in the
future, so this will need to go eventually. I suppose it also protects
against some unforeseen bug where we we can append more than 2 items.
sys$purge() is a bit unique, in that it is probably in the systems
advantage to attempt to limp along if we hit OOM while processing
the vmobjects to purge. This change modifies the algorithm to observe
OOM and continue trying to purge any previously visited VMObjects.