Implement (anti)aliased point drawing and anti-aliased line drawing.
Supported through LibGL's `GL_POINTS`, `GL_LINES`, `GL_LINE_LOOP` and
`GL_LINE_STRIP`.
In order to support this, `LibSoftGPU`s rasterization logic was
reworked. Now, any primitive can be drawn by invoking `rasterize()`
which takes care of the quad loop and fragment testing logic. Three
callbacks need to be passed:
* `set_coverage_mask`: the primitive needs to provide initial coverage
mask information so fragments can be discarded early.
* `set_quad_depth`: fragments survived stencil testing, so depth values
need to be set so depth testing can take place.
* `set_quad_attributes`: fragments survived depth testing, so fragment
shading is going to take place. All attributes like color, tex coords
and fog depth need to be set so alpha testing and eventually,
fragment rasterization can take place.
As of this commit, there are four instantiations of this function:
* Triangle rasterization
* Points - aliased
* Points - anti-aliased
* Lines - anti-aliased
In order to standardize vertex processing for all primitive types,
things like vertex transformation, lighting and tex coord generation
are now taking place before clipping.
This new class with an admittedly long OOP-y name provides a circular
queue in shared memory. The queue is a lock-free synchronous queue
implemented with atomics, and its implementation is significantly
simplified by only accounting for one producer (and multiple consumers).
It is intended to be used as a producer-consumer communication
datastructure across processes. The original motivation behind this
class is efficient short-period transfer of audio data in userspace.
This class includes formal proofs of several correctness properties of
the main queue operations `enqueue` and `dequeue`. These proofs are not
100% complete in their existing form as the invariants they depend on
are "handwaved". This seems fine to me right now, as any proof is better
than no proof :^). Anyways, the proofs should build confidence that the
implemented algorithms, which are only roughly based on existing work,
operate correctly in even the worst-case concurrency scenarios.
According to the spec, these calls should be identical to an invocation
of `glVertex2*`, which sets the W-coordinate to 1 by default.
This fixes the credits sequence rendering of Tux Racer.
Each LibGL test can now be tested against a reference QOI image.
Initially, these images can be generated by setting `SAVE_OUTPUT` to
`true`, which will save a bunch of QOI images to `/home/anon`.
Similar reasoning to making Core::Stream::read() return Bytes, except
that every user of read_line() creates a StringView from the result, so
let's just return one right away.
A mistake I've repeatedly made is along these lines:
```c++
auto nread = TRY(source_file->read(buffer));
TRY(destination_file->write(buffer));
```
It's a little clunky to have to create a Bytes or StringView from the
buffer's data pointer and the nread, and easy to forget and just use
the buffer. So, this patch changes the read() function to return a
Bytes of the data that were just read.
The other read_foo() methods will be modified in the same way in
subsequent commits.
Fixes#13687
On oss-fuzz, the LibJS REPL is provided a file encoded with Windows-1252
with the following contents:
/ô¡°½/
The REPL assumes the input file is UTF-8. So in Windows-1252, the above
is represented as [0x2f 0xf4 0xa1 0xb0 0xbd 0x2f]. The inner 4 bytes are
actually a valid UTF-8 encoding if we only look at the most significant
bits to parse leading/continuation bytes. However, it decodes to the
code point U+121c3d, which is not a valid code point.
This commit adds additional validation to ensure the decoded code point
itself is also valid.
This implements Optional<T&> as a T*, whose presence has been missing
since the early days of Optional.
As a lot of find_foo() APIs return an Optional<T> which imposes a
pointless copy on the underlying value, and can sometimes be very
misleading, with this change, those APIs can return Optional<T&>.
This is in Tests/LibTTF instead of Tests/LibGfx because Tests/LibGfx
depends on serenity's file system layout and can't run in lagom,
but this new test runs just fine in lagom.
This caused a system-wide crash because of a previous bug relating to
non-trivial types in HashTable. Therefore, check that such types
actually work under various workloads.
Thrashing is what I call the situations where a table is mostly filled
with deleted markers, causing an increase in size (at least temporarily)
when a simple re-hash would be enough to get rid of those. This happens
when a hash table (especially with many elements) has a lot of deletes
and re-inserts done to it, which is what this benchmark does.
Security handlers manage encryption and decription of PDF files. The
standard security handler uses RC4/MD5 to perform its crypto (AES as
well, but that is not yet implemented).
This is an enum-like type that works with arbitrary sized storage > u64,
which is the limit for a regular enum class - which limits it to 64
members when needing bit field behavior.
Co-authored-by: Ali Mohammad Pur <mpfard@serenityos.org>
The SHA384 and SHA512 hashes would produce incorrect results for data
where the length % 128 was in the range 112-119. This was because the
total number of bits in the hashed values was added at the end as a
64-bit number instead of a 128-bit number. In most cases this would not
cause any issues, as this space was padded with zeroes, however in the
case that the length % 128 was 112-119, some incorrect data ended up
where this 128-bit length value was expected.
This change fixes the problems in LibTLS where some websites would
result in a DecryptError on handshake.
This converts the return value of File::read_link() from String to
ErrorOr<String>.
The rest of the change is to support the potential of an Error being
returned and subsequent release of the value when no Error is returned.
Unfortunately at this stage none of the places affected can utililize
our TRY() macro.
Add the required methods to SECP256r1 to conform to the EllipticCurve
virtual base class. Using this updated version of SECP256r1, support in
LibTLS is implemented.
These changes generalize the interface with an elliptic curve
implementation. This allows LibTLS to support elliptic curves generally
without needing the specifics of elliptic curve implementations.
This should allow for easier addition of other elliptic curves.
Previously, case-insensitively searching the haystack "Go Go Back" for
the needle "Go Back" would return false:
1. Match the first three characters. "Go ".
2. Notice that 'G' and 'B' don't match.
3. Skip ahead 3 characters, plus 1 for the outer for-loop.
4. Now, the haystack is effectively "o Back", so the match fails.
Reducing the skip by 1 fixes this issue. I'm not 100% convinced this
fixes all cases, but I haven't been able to find any cases where it
doesn't work now. :^)
This implementation of the secp256r1 elliptic curve uses two techniques
to improve the performance of the operations.
1. All coordinates are stored in Jacobian form, (X/Z^2, Y/Z^3, Z), which
removes the need for division operations during point addition or
doubling. The points are converted at the start of the computation,
and converted back at the end.
2. All values are transformed to Montgomery form, to allow for faster
modular multiplication using the Montgomery modular multiplication
method. This means that all coordinates have to be converted into
this form, and back out of this form before returning them.
It makes no sense to require passing a global object and doing a stack
space check in some cases where running out of stack is highly unlikely,
we can't recover from errors, and currently ignore the result anyway.
This is most commonly in constructors and when setting things up, rather
than regular function calls.