SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
In preparation for marking BlockingResult [[nodiscard]], there are a few
places that perform infinite waits, which we never observe the result of
the wait. Instead of suppressing them, add an alternate function which
returns void when performing and infinite wait.
Problem:
- Many constructors are defined as `{}` rather than using the ` =
default` compiler-provided constructor.
- Some types provide an implicit conversion operator from `nullptr_t`
instead of requiring the caller to default construct. This violates
the C++ Core Guidelines suggestion to declare single-argument
constructors explicit
(https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit).
Solution:
- Change default constructors to use the compiler-provided default
constructor.
- Remove implicit conversion operators from `nullptr_t` and change
usage to enforce type consistency without conversion.
When ProcFS could no longer allocate KBuffer objects to serve calls to
read, it would just return 0, indicating EOF. This then triggered
parsing errors because code assumed it read the file.
Because read isn't supposed to return ENOMEM, change ProcFS to populate
the file data upon file open or seek to the beginning. This also means
that calls to open can now return ENOMEM if needed. This allows the
caller to either be able to successfully open the file and read it, or
fail to open it in the first place.
Fix some problems with join blocks where the joining thread block
condition was added twice, which lead to a crash when trying to
unblock that condition a second time.
Deferred block condition evaluation by File objects were also not
properly keeping the File object alive, which lead to some random
crashes and corruption problems.
Other problems were caused by the fact that the Queued state didn't
handle signals/interruptions consistently. To solve these issues we
remove this state entirely, along with Thread::wait_on and change
the WaitQueue into a BlockCondition instead.
Also, deliver signals even if there isn't going to be a context switch
to another thread.
Fixes#4336 and #4330
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.
This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Instead of FileDescriptor branching on the type of File it's wrapping,
add a File::stat() function that can be overridden to provide custom
behavior for the stat syscalls.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
This enables a nice warning in case a function becomes dead code. Also, in case
of signal_trampoline_dummy, marking it external (non-static) prevents it from
being 'optimized away', which would lead to surprising and weird linker errors.
I found these places by using -Wmissing-declarations.
The Kernel still shows these issues, which I think are false-positives,
but don't want to touch:
- Kernel/Arch/i386/CPU.cpp:1081:17: void Kernel::enter_thread_context(Kernel::Thread*, Kernel::Thread*)
- Kernel/Arch/i386/CPU.cpp:1170:17: void Kernel::context_first_init(Kernel::Thread*, Kernel::Thread*, Kernel::TrapFrame*)
- Kernel/Arch/i386/CPU.cpp:1304:16: u32 Kernel::do_init_context(Kernel::Thread*, u32)
- Kernel/Arch/i386/CPU.cpp:1347:17: void Kernel::pre_init_finished()
- Kernel/Arch/i386/CPU.cpp:1360:17: void Kernel::post_init_finished()
No idea, not gonna touch it.
- Kernel/init.cpp:104:30: void Kernel::init()
- Kernel/init.cpp:167:30: void Kernel::init_ap(u32, Kernel::Processor*)
- Kernel/init.cpp:184:17: void Kernel::init_finished(u32)
Called by boot.S.
- Kernel/init.cpp:383:16: int Kernel::__cxa_atexit(void (*)(void*), void*, void*)
- Kernel/StdLib.cpp:285:19: void __cxa_pure_virtual()
- Kernel/StdLib.cpp:300:19: void __stack_chk_fail()
- Kernel/StdLib.cpp:305:19: void __stack_chk_fail_local()
Not sure how to tell the compiler that the compiler is already using them.
Also, maybe __cxa_atexit should go into StdLib.cpp?
- Kernel/Modules/TestModule.cpp:31:17: void module_init()
- Kernel/Modules/TestModule.cpp:40:17: void module_fini()
Could maybe go into a new header. This would also provide type-checking for new modules.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and TTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Instead of using the FIFO's memory address as part of its absolute path
identity, just use an incrementing FIFO index instead.
Note that this is not used for anything other than debugging (it helps
you identify which file descriptors refer to the same FIFO by looking
at /proc/PID/fds