Instead, hold the lock while we copy the contents to a stack-based
Vector then iterate on it without any locking.
Because we rely on heap allocations, we need to propagate errors back
in case of OOM condition, therefore, both PCI::enumerate API function
and PCI::Access::add_host_controller_and_enumerate_attached_devices use
now a ErrorOr<void> return value to propagate errors. OOM Error can only
occur when enumerating the m_device_identifiers vector under a spinlock
and trying to expand the temporary Vector which will be used locklessly
to actually iterate over the PCI::DeviceIdentifiers objects.
This prevents a kernel panic found in CI when m_receive_queue's size is
queried and found to be non-zero, then a different thread clears the
queue, and finally the first thread continues into the if block and
calls the queue's first() method, which then fails an assertion that
the queue's size is non-zero.
We were frequently dropping packets when downloading large files.
Then we had to wait for TCP retransmission which slowed things down.
This patch dramatically improves E1000 throughput by increasing the
number of RX/TX buffers from 32/8 to 256/256.
The largest chunk of JavaScript from Discord now downloads in roughly
1 second instead of 7 seconds. :^)
Rename the bound socket accessor from socket() to bound_socket().
Also return RefPtr<LocalSocket> instead of a raw pointer, to make it
harder for callers to mess up.
1. When receiving FIN while in FinWait1, we now reply with ACK
in addition to the FinWait1->Closing transition.
2. When receiving FIN|ACK while in FinWait1, we now reply with
ACK and transition from FinWait1->TimeWait.
3. When receiving FIN while in FinWait2, we now reply with ACK.
This commit removes the usage of HashMap in Mutex, thereby making Mutex
be allocation-free.
In order to achieve this several simplifications were made to Mutex,
removing unused code-paths and extra VERIFYs:
* We no longer support 'upgrading' a shared lock holder to an
exclusive holder when it is the only shared holder and it did not
unlock the lock before relocking it as exclusive. NOTE: Unlike the
rest of these changes, this scenario is not VERIFY-able in an
allocation-free way, as a result the new LOCK_SHARED_UPGRADE_DEBUG
debug flag was added, this flag lets Mutex allocate in order to
detect such cases when debugging a deadlock.
* We no longer support checking if a Mutex is locked by the current
thread when the Mutex was not locked exclusively, the shared version
of this check was not used anywhere.
* We no longer support force unlocking/relocking a Mutex if the Mutex
was not locked exclusively, the shared version of these functions
was not used anywhere.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
When doing the last unref() on a listed-ref-counted object, we keep
the list locked while mutating the ref count. The destructor itself
is invoked after unlocking the list.
This was racy with weakable classes, since their weak pointer factory
still pointed to the object after we'd decided to destroy it. That
opened a small time window where someone could try to strong-ref a weak
pointer to an object after it was removed from the list, but just before
the destructor got invoked.
This patch closes the race window by explicitly revoking all weak
pointers while the list is locked.
Use the same trick as SlavePTY and override unref() to provide safe
removal from the sockets_by_tuple table when destroying a TCPSocket.
This should fix the TCPSocket::from_tuple() flake seen on CI.
Calls to link_up() in the E1000 driver would read the link state
directly from the hardware on every call. This had negative
performance impact in high throughput situations since link_up()
is called every time an IP packet's route is resolved.
This patch takes inspiration from the RTL8139 network adapter where
the link state is stored in a bool and only updated when the hardware
generates an interrupt related to link state change.
After this change I measured a ~9% increase in TCP Tx throughput
using:
cat /dev/zero | nc <host_IP> <host_port> from the Serenity VM to my
host machine
Previously we would crash the process immediately when a promise
violation was found during a syscall. This is error prone, as we
don't unwind the stack. This means that in certain cases we can
leak resources, like an OwnPtr / RefPtr tracked on the stack. Or
even leak a lock acquired in a ScopeLockLocker.
To remedy this situation we move the promise violation handling to
the syscall handler, right before we return to user space. This
allows the code to follow the normal unwind path, and grantees
there is no longer any cleanup that needs to occur.
The Process::require_promise() and Process::require_no_promises()
functions were modified to return ErrorOr<void> so we enforce that
the errors are always propagated by the caller.
This change lays the foundation for making the require_promise return
an error hand handling the process abort outside of the syscall
implementations, to avoid cases where we would leak resources.
It also has the advantage that it makes removes a gs pointer read
to look up the current thread, then process for every syscall. We
can instead go through the Process this pointer in most cases.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
Since a socket can be accessed by multiple threads concurrently, we need
to protect shared data behind the socket mutex.
There's very likely more places where we need to fix this, the purpose
of this patch is to fix a VERIFY() failure in getsockopt() seen on CI.
This was used to return a pre-locked UDPSocket in one place, but there
was really no need for that mechanism in the first place since the
caller ends up locking the socket anyway.
The sa_family field in SIOCGIFHWADDR specifies the underlying network
interface's device type, this is hardcoded to generic "Ethernet" right
now, as we don't have a nice way to query it.