Problem:
- C functions with no arguments require a single `void` in the argument list.
Solution:
- Put the `void` in the argument list of functions in C header files.
IRQ 7 and 15 on the PIC architecture are used for spurious interrupts.
IRQ 7 could also be used for LPT connection, and IRQ 15 can be used for
the secondary IDE channel. Therefore, we need to allow to install a
real IRQ handler and check if a real IRQ was asserted. If so, we handle
them in the usual way.
A note on this fix - unregistering or registering a new IRQ handler
after we already registered one in the spurious interrupt handler is
not supported yet.
Problem:
- `(void)` simply casts the expression to void. This is understood to
indicate that it is ignored, but this is really a compiler trick to
get the compiler to not generate a warning.
Solution:
- Use the `[[maybe_unused]]` attribute to indicate the value is unused.
Note:
- Functions taking a `(void)` argument list have also been changed to
`()` because this is not needed and shows up in the same grep
command.
Move counting interrupts out of the handle_interrupt method so that
it is done in all cases without the interrupt handler having to
implement it explicitly.
Also make the counter an atomic value as e.g. the LocalAPIC interrupts
may be triggered on multiple processors simultaneously.
Fixes#4297
Remapping these registers every time we try to read from or write to
them causes a lot of SMP broadcasts and a lot of other overhead.
This improves boot time noticeably.
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
We need to assert if interrupts are not disabled when changing the
interrupt number of an interrupt handler.
Before this fix, any change like this would lead to a crash,
because we are using InterruptDisabler in IRQHandler::change_irq_number.
There are plenty of places in the kernel that aren't
checking if they actually got their allocation.
This fixes some of them, but definitely not all.
Fixes#3390Fixes#3391
Also, let's make find_one_free_page() return nullptr
if it doesn't get a free index. This stops the kernel
crashing when out of memory and allows memory purging
to take place again.
Fixes#3487
An IRQ handler should always be ready to respond to any IRQ.
We must remember that hardware can generate IRQs without any interaction
from our code at all. Ignoring IRQs in such cases is obviously not the
right thing to do.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
We need to halt the BSP briefly until all APs are ready for the
first context switch, but we can't hold the same spinlock by all
of them while doing so. So, while the APs are waiting on each other
they need to release the scheduler lock, and then once signaled
re-acquire it. Should solve some timing dependent hangs or crashes,
most easily observed using qemu with kvm disabled.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
Add a MappedROM::find_chunk_starting_with() helper since that's a very
common usage pattern in clients of this code.
Also convert MultiProcessorParser from a persistent singleton object
to a temporary object constructed via a failable factory function.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
There was a frequently occurring pattern of "map this physical address
into kernel VM, then read from it, then unmap it again".
This new typed_map() encapsulates that logic by giving you back a
typed pointer to the kind of structure you're interested in accessing.
It returns a TypedMapping<T> that can be used mostly like a pointer.
When destroyed, the TypedMapping object will unmap the memory. :^)