Add an ExpandableHeap and switch kmalloc to use it, which allows
for the kmalloc heap to grow as needed.
In order to make heap expansion to work, we keep around a 1 MiB backup
memory region, because creating a region would require space in the
same heap. This means, the heap will grow as soon as the reported
utilization is less than 1 MiB. It will also return memory if an entire
subheap is no longer needed, although that is rarely possible.
Previously we were putting strings at the bottom of the allocated stack
region, and pointer arrays (argv, env, auxv) at the top. There was no
reason for this other than "it seemed easier to do it that way at the
time I wrote it."
This patch packs the strings and pointer vectors into the same area at
the top of the stack.
This reduces the memory footprint of all programs by 4 KiB. :^)
This enables a nice warning in case a function becomes dead code. Also, in case
of signal_trampoline_dummy, marking it external (non-static) prevents it from
being 'optimized away', which would lead to surprising and weird linker errors.
I found these places by using -Wmissing-declarations.
The Kernel still shows these issues, which I think are false-positives,
but don't want to touch:
- Kernel/Arch/i386/CPU.cpp:1081:17: void Kernel::enter_thread_context(Kernel::Thread*, Kernel::Thread*)
- Kernel/Arch/i386/CPU.cpp:1170:17: void Kernel::context_first_init(Kernel::Thread*, Kernel::Thread*, Kernel::TrapFrame*)
- Kernel/Arch/i386/CPU.cpp:1304:16: u32 Kernel::do_init_context(Kernel::Thread*, u32)
- Kernel/Arch/i386/CPU.cpp:1347:17: void Kernel::pre_init_finished()
- Kernel/Arch/i386/CPU.cpp:1360:17: void Kernel::post_init_finished()
No idea, not gonna touch it.
- Kernel/init.cpp:104:30: void Kernel::init()
- Kernel/init.cpp:167:30: void Kernel::init_ap(u32, Kernel::Processor*)
- Kernel/init.cpp:184:17: void Kernel::init_finished(u32)
Called by boot.S.
- Kernel/init.cpp:383:16: int Kernel::__cxa_atexit(void (*)(void*), void*, void*)
- Kernel/StdLib.cpp:285:19: void __cxa_pure_virtual()
- Kernel/StdLib.cpp:300:19: void __stack_chk_fail()
- Kernel/StdLib.cpp:305:19: void __stack_chk_fail_local()
Not sure how to tell the compiler that the compiler is already using them.
Also, maybe __cxa_atexit should go into StdLib.cpp?
- Kernel/Modules/TestModule.cpp:31:17: void module_init()
- Kernel/Modules/TestModule.cpp:40:17: void module_fini()
Could maybe go into a new header. This would also provide type-checking for new modules.
We need to always return from Thread::wait_on, even when a thread
is being killed. This is necessary so that the kernel call stack
can clean up and release references held by it. Then, right before
transitioning back to user mode, we check if the thread is
supposed to die, and at that point change the thread state to
Dying to prevent further scheduling of this thread.
This addresses some possible resource leaks similar to #3073
This compiles, and contains exactly the same bugs as before.
The regex 'FIXME: PID/' should reveal all markers that I left behind, including:
- Incomplete conversion
- Issues or things that look fishy
- Actual bugs that will go wrong during runtime
If a thread is waiting but getting killed, we need to dequeue
the thread from the WaitQueue so that a potential wake before
finalization doesn't happen.
Allow passing in an optional timeout to Thread::block and move
the timeout check out of Thread::Blocker. This way all Blockers
implicitly support timeouts and don't need to implement it
themselves. Do however allow them to override timeouts (e.g.
for sockets).
We need to have a Thread lock to protect threading related
operations, such as Thread::m_blocker which is used in
Thread::block.
Also, if a Thread::Blocker indicates that it should be
unblocking immediately, don't actually block the Thread
and instead return immediately in Thread::block.
This fixes a regression introduced by the new software context
switching where the Kernel would not deliver a signal unless the
process is making system calls. This is because the TSS no longer
updates the CS value, so the scheduler never considered delivery
as the process always appeared to be in kernel mode. With software
context switching we can just set up the signal trampoline at
any time and when the processor returns back to user mode it'll
get executed. This should fix e.g. killing programs that are
stuck in some tight loop that doesn't make any system calls and
is only pre-empted by the timer interrupt.
Fixes#2958
By making the Process class RefCounted we don't really need
ProcessInspectionHandle anymore. This also fixes some race
conditions where a Process may be deleted while still being
used by ProcFS.
Also make sure to acquire the Process' lock when accessing
regions.
Last but not least, there's no reason why a thread can't be
scheduled while being inspected, though in practice it won't
happen anyway because the scheduler lock is held at the same
time.
Because Thread::sleep is an internal interface, it's easy to check that there
are only few callers: Process::sys$sleep, usleep, and nanosleep are happy
with this increased size, because now they support the entire range of their
arguments (assuming small-ish values for ticks_per_second()).
SyncTask doesn't care.
Note that the old behavior wasn't "cap out at 388 days", which would have been
reasonable. Instead, the code resulted in unsigned overflow, meaning that a
very long sleep would "on average" end after about 194 days, sometimes much
quicker.
We now have BlockResult::WokeNormally and BlockResult::NotBlocked,
both of which indicate no error. We can no longer just check for
BlockResult::WokeNormally and assume anything else must be an
interruption.
The AT_* entries are placed after the environment variables, so that
they can be found by iterating until the end of the envp array, and then
going even further beyond :^)
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
The short-circuit path added for waiting on a queue that already had a
pending wake was able to return with interrupts disabled, which breaks
the API contract of wait_on() always returning with IF=1.
Fix this by adding a way to override the restored IF in ScopedCritical.
If WaitQueue::wake_all, WaitQueue::wake_one, or WaitQueue::wake_n
is called but nobody is currently waiting, we should remember that
fact and prevent someone from waiting after such a request. This
solves a race condition where the Finalizer thread is notified
to finalize a thread, but it is not (yet) waiting on this queue.
Fixes#2693
These changes solve a number of problems with the software
context swithcing:
* The scheduler lock really should be held throughout context switches
* Transitioning from the initial (idle) thread to another needs to
hold the scheduler lock
* Transitioning from a dying thread to another also needs to hold
the scheduler lock
* Dying threads cannot necessarily be finalized if they haven't
switched out of it yet, so flag them as active while a processor
is running it (the Running state may be switched to Dying while
it still is actually running)
The Lock class still permits no reason, but for everything else
require a reason to be passed to Thread::wait_on. This makes it
easier to diagnose why a Thread is in Queued state.
If we're trying to walk the stack for another thread, we can
no longer retreive the EBP register from Thread::m_tss. Instead,
we need to look at the top of the kernel stack, because all threads
not currently running were last in kernel mode. Context switches
now always trigger a brief switch to kernel mode, and Thread::m_tss
only is used to save ESP and EIP.
Fixes#2678
When delivering urgent signals to the current thread
we need to check if we should be unblocked, and if not
we need to yield to another process.
We also need to make sure that we suppress context switches
during Process::exec() so that we don't clobber the registers
that it sets up (eip mainly) by a context switch. To be able
to do that we add the concept of a critical section, which are
similar to Process::m_in_irq but different in that they can be
requested at any time. Calls to Scheduler::yield and
Scheduler::donate_to will return instantly without triggering
a context switch, but the processor will then asynchronously
trigger a context switch once the critical section is left.
If these methods get inlined, the compiler is able to statically eliminate most
of the assertions. Alas, it doesn't realize this, and believes inlining them to
be too expensive. So give it a strong hint that it's not the case.
This *decreases* the kernel binary size.
The public consumers of the timer API shouldn't need to know
the how timer id's are tracked internally. Expose a typedef
instead to allow the internal implementation to be protected
from potential churn in the future.
It's also just good API design.
This change plumbs a new optional timeout option to wait_on.
The timeout is enabled by enqueing a timer on the timer queue
while we are waiting. We can then see if we were woken up or
timed out by checking if we are still on the wait queue or not.
PT_SETTREGS sets the regsiters of the traced thread. It can only be
used when the tracee is stopped.
Also, refactor ptrace.
The implementation was getting long and cluttered the alraedy large
Process.cpp file.
This commit moves the bulk of the implementation to Kernel/Ptrace.cpp,
and factors out peek & poke to separate methods of the Process class.
Before this commit, m_blocker was only set to null in Thread::block,
after the thread has been unblocked.
Starting with this commit, m_blocker is also set to null in
Thread::unblock.
This change will allow us to implement a missing feature of the PT_TRACE
command of the ptrace syscall - stopping the traced thread when it
exits the execve syscall.
That feature will be implemented by sending a blocking SIGSTOP to the
traced thread after it has executed the execve logic and before it
starts executing the new program in userspace.
However, since Process::exec arranges the tss to return to userspace
(the so-called "yield-teleport"), the code in Thread::block that should
be run after the thread unblocks, and sets m_blocker to null, never
actually runs.
Setting m_blocker to null in Thread::unblock allows us to avoid an
incorrect state where the thread is in a Running state but conatins a
pointer to a Blocker.
We now store the previous thread state in m_stop_state for all
transitions to the Stopped state via Thread::set_state.
Fixes#1752 whereupon resuming a thread that was stopped with SIGTSTP,
the previous state of the thread is not remembered correctly, resulting
in m_stop_state == State::Invalid and the associated assertion fails.
This commit adds a basic implementation of
the ptrace syscall, which allows one process
(the tracer) to control another process (the tracee).
While a process is being traced, it is stopped whenever a signal is
received (other than SIGCONT).
The tracer can start tracing another thread with PT_ATTACH,
which causes the tracee to stop.
From there, the tracer can use PT_CONTINUE
to continue the execution of the tracee,
or use other request codes (which haven't been implemented yet)
to modify the state of the tracee.
Additional request codes are PT_SYSCALL, which causes the tracee to
continue exection but stop at the next entry or exit from a syscall,
and PT_GETREGS which fethces the last saved register set of the tracee
(can be used to inspect syscall arguments and return value).
A special request code is PT_TRACE_ME, which is issued by the tracee
and causes it to stop when it calls execve and wait for the
tracer to attach.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
Previously we would map the entire executable of a program in its own
address space (but make it unavailable to userspace code.)
This patch removes that and changes the symbolication code to remap
the executable on demand (and into the kernel's own address space
instead of the process address space.)
This opens up a couple of further simplifications that will follow.
When stopping a thread with the SIGSTOP signal, we now store the thread
state in Thread::m_stop_state. That state is then restored on SIGCONT.
This fixes an issue where previously-blocked threads would unblock
upon resume. Now they simply resume in the Blocked state, and it's up
to the regular unblocking mechanism to unblock them.
Fixes#1326.
We don't have to log the process name/PID/TID, dbg() automatically adds
that as a prefix to every line.
Also we don't have to do .characters() on Strings passed to dbg() :^)
set_interrupted_by_death was never called whenever a thread that had
a joiner died, so the joiner remained with the joinee pointer there,
resulting in an assertion fail in JoinBlocker: m_joinee pointed to
a freed task, filled with garbage.
Thread::current->m_joinee may not be valid after the unblock
Properly return the joinee exit value to the joiner thread.
This allows a process wich has more than 1 thread to call exec, even
from a thread. This kills all the other threads, but it won't wait for
them to finish, just makes sure that they are not in a running/runable
state.
In the case where a thread does exec, the new program PID will be the
thread TID, to keep the PID == TID in the new process.
This introduces a new function inside the Process class,
kill_threads_except_self which is called on exit() too (exit with
multiple threads wasn't properly working either).
Inside the Lock class, there is the need for a new function,
clear_waiters, which removes all the waiters from the
Process::big_lock. This is needed since after a exit/exec, there should
be no other threads waiting for this lock, the threads should be simply
killed. Only queued threads should wait for this lock at this point,
since blocked threads are handled in set_should_die.
The kernel sampling profiler will walk thread stacks during the timer
tick handler. Since it's not safe to trigger page faults during IRQ's,
we now avoid this by checking the page tables manually before accessing
each stack location.