We add this feature together with the VMWareBackdoor class.
VMWareBackdoor class is responsible for enabling the vmmouse, and then
controlling it from the PS2 mouse IRQ handler.
Before putting itself back on the wait queue, the finalizer task will
now check if there's more work to do, and if so, do it first. :^)
This patch also puts a bunch of process/thread debug logging behind
PROCESS_DEBUG and THREAD_DEBUG since it was unbearable to debug this
stuff with all the spam.
System components that need an IRQ handling are now inheriting the
InterruptHandler class.
In addition to that, the initialization process of PATAChannel was
changed to fit the changes.
PATAChannel, E1000NetworkAdapter and RTL8139NetworkAdapter are now
inheriting from PCI::Device instead of InterruptHandler directly.
We don't need to have this method anymore. It was a hack that was used
in many components in the system but currently we use better methods to
create virtual memory mappings. To prevent any further use of this
method it's best to just remove it completely.
Also, the APIC code is disabled for now since it doesn't help booting
the system, and is broken since it relies on identity mapping to exist
in the first 1MB. Any call to the APIC code will result in assertion
failed.
In addition to that, the name of the method which is responsible to
create an identity mapping between 1MB to 2MB was changed, to be more
precise about its purpose.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
The kernel and its static data structures are no longer identity-mapped
in the bottom 8MB of the address space, but instead move above 3GB.
The first 8MB above 3GB are pseudo-identity-mapped to the bottom 8MB of
the physical address space. But things don't have to stay this way!
Thanks to Jesse who made an earlier attempt at this, it was really easy
to get device drivers working once the page tables were in place! :^)
Fixes#734.
Also, PCI Initializer dismiss() now deletes the object correctly, and
the PCI initialization process no longer use the DMI decoder to
determine if PCI is supported.
grub configuration files include an entry to boot the OS without
ACPI support.
The chroot() syscall now allows the superuser to isolate a process into
a specific subtree of the filesystem. This is not strictly permanent,
as it is also possible for a superuser to break *out* of a chroot, but
it is a useful mechanism for isolating unprivileged processes.
The VFS now uses the current process's root_directory() as the root for
path resolution purposes. The root directory is stored as an uncached
Custody in the Process object.
We now have these API's in <Kernel/Random.h>:
- get_fast_random_bytes(u8* buffer, size_t buffer_size)
- get_good_random_bytes(u8* buffer, size_t buffer_size)
- get_fast_random<T>()
- get_good_random<T>()
Internally they both use x86 RDRAND if available, otherwise they fall
back to the same LCG we had in RandomDevice all along.
The main purpose of this patch is to give kernel code a way to better
express its needs for random data.
Randomness is something that will require a lot more work, but this is
hopefully a step in the right direction.
The new PCI subsystem is initialized during runtime.
PCI::Initializer is supposed to be called during early boot, to
perform a few tests, and initialize the proper configuration space
access mechanism. Kernel boot parameters can be specified by a user to
determine what tests will occur, to aid debugging on problematic
machines.
After that, PCI::Initializer should be dismissed.
PCI::IOAccess is a class that is derived from PCI::Access
class and implements PCI configuration space access mechanism via x86
IO ports.
PCI::MMIOAccess is a class that is derived from PCI::Access
and implements PCI configurtaion space access mechanism via memory
access.
The new PCI subsystem also supports determination of IO/MMIO space
needed by a device by checking a given BAR.
In addition, Every device or component that use the PCI subsystem has
changed to match the last changes.
This prevents code running outside of kernel mode from using the
following instructions:
* SGDT - Store Global Descriptor Table
* SIDT - Store Interrupt Descriptor Table
* SLDT - Store Local Descriptor Table
* SMSW - Store Machine Status Word
* STR - Store Task Register
There's no need for userspace to be able to use these instructions so
let's just disable them to prevent information leakage.
We now refuse to boot on machines that don't support PAE since all
of our paging code depends on it.
Also let's only enable SSE and PGE support if the CPU advertises it.
Threads now have numeric priorities with a base priority in the 1-99
range.
Whenever a runnable thread is *not* scheduled, its effective priority
is incremented by 1. This is tracked in Thread::m_extra_priority.
The effective priority of a thread is m_priority + m_extra_priority.
When a runnable thread *is* scheduled, its m_extra_priority is reset to
zero and the effective priority returns to base.
This means that lower-priority threads will always eventually get
scheduled to run, once its effective priority becomes high enough to
exceed the base priority of threads "above" it.
The previous values for ThreadPriority (Low, Normal and High) are now
replaced as follows:
Low -> 10
Normal -> 30
High -> 50
In other words, it will take 20 ticks for a "Low" priority thread to
get to "Normal" effective priority, and another 20 to reach "High".
This is not perfect, and I've used some quite naive data structures,
but I think the mechanism will allow us to build various new and
interesting optimizations, and we can figure out better data structures
later on. :^)
The idea of all processes reliably having a main thread was nice in
some ways, but cumbersome in others. More importantly, it didn't match
up with POSIX thread semantics, so let's move away from it.
This thread gets rid of Process::main_thread() and you now we just have
a bunch of Thread objects floating around each Process.
When the finalizer nukes the last Thread in a Process, it will also
tear down the Process.
There's a bunch of more things to fix around this, but this is where we
get started :^)
Also added an option in the run script to force PIO operation mode with
the IDE controller.
In addition, we're no longer limited to PIIX3 and PIIX4 chipsets for DMA
Instead of the big ugly switch statement, build a lookup table using
the syscall enumeration macro.
This greatly simplifies the syscall implementation. :^)
Scheduling priority is now set at the thread level instead of at the
process level.
This is a step towards allowing processes to set different priorities
for threads. There's no userspace API for that yet, since only the main
thread's priority is affected by sched_setparam().
Oops, we were creating these and then throwing them away. They will
get instantiated a bit later, when we bring up the mounts in /etc/fstab
from userspace.
Add text.startup to the .text block, add .ctors as well.
Use them in init.cpp to call global constructors after
gtd and idt init. That way any funky constructors should be ok.
Also defines some Itanium C++ ABI methods that probably shouldn't be,
but without them the linker gets very angry.
If the code ever actually tries to use __dso_handle or call
__cxa_atexit, there's bigger problems with the kernel.
Bit of a hack would be an understatement but hey. It works :)
Also added a script to handle creation of GPT partitioned disk (with
GRUB config file). Block limit will be used to disallow potential access
to other partitions.
This is a freelist allocator with static size classes that works as a
complement to the generic kmalloc(). It's a lot faster than kmalloc()
since allocation just means popping from the freelist.
It's also significantly more compact when there are a lot of objects
smaller than the minimum kmalloc chunk size (32 bytes.)
This patch enables it for the Region and PhysicalPage classes.
In the PhysicalPage (8 bytes) case, it's a huge improvement since we
no longer waste 75% of the storage allocated.
There are also a number of ways this can be improved, so let's keep
working on it going forward.
If we receive an IRQ while the idle task is running, prevent it from
re-halting the CPU after the IRQ handler returns.
Instead have the idle task yield to the scheduler, so we can see if
the IRQ has unblocked something.
By setting up the devices in init() and looping over the registered
network adapters in NetworkTask_main, we can remove the remaining
hard-coded adapter references from the network code.
This also assigns IPs according to the default range supplied by QEMU
in its slirp networking mode.
This implements a very basic VGA device using the information provided
to us by the bootloader in the multiboot header. This allows Serenity to
boot to the desktop on basically any halfway modern system.
The complication is around /proc/sys/ variables, which were attached
to inodes. Now they're their own thing, and the corresponding inodes
are lazily created (as all other ProcFS inodes are) and simply refer
to them by index.