Add an extra out-parameter to shbuf_get() that receives the size of the
shared buffer. That way we don't need to make a separate syscall to
get the size, which we always did immediately after.
This feels a lot more consistent and Unixy:
create_shared_buffer() => shbuf_create()
share_buffer_with() => shbuf_allow_pid()
share_buffer_globally() => shbuf_allow_all()
get_shared_buffer() => shbuf_get()
release_shared_buffer() => shbuf_release()
seal_shared_buffer() => shbuf_seal()
get_shared_buffer_size() => shbuf_get_size()
Also, "shared_buffer_id" is shortened to "shbuf_id" all around.
Calling shutdown prevents further reads and/or writes on a socket.
We should do a few more things based on the type of socket, but this
initial implementation just puts the basic mechanism in place.
Work towards #428.
sys$waitid() takes an explicit description of whether it's waiting for a single
process with the given PID, all of the children, a group, etc., and returns its
info as a siginfo_t.
It also doesn't automatically imply WEXITED, which clears up the confusion in
the kernel.
This patch introduces sys$perf_event() with two event types:
- PERF_EVENT_MALLOC
- PERF_EVENT_FREE
After the first call to sys$perf_event(), a process will begin keeping
these events in a buffer. When the process dies, that buffer will be
written out to "perfcore" in the current directory unless that filename
is already taken.
This is probably not the best way to do this, but it's a start and will
make it possible to start doing memory allocation profiling. :^)
This syscall is a complement to pledge() and adds the same sort of
incremental relinquishing of capabilities for filesystem access.
The first call to unveil() will "drop a veil" on the process, and from
now on, only unveiled parts of the filesystem are visible to it.
Each call to unveil() specifies a path to either a directory or a file
along with permissions for that path. The permissions are a combination
of the following:
- r: Read access (like the "rpath" promise)
- w: Write access (like the "wpath" promise)
- x: Execute access
- c: Create/remove access (like the "cpath" promise)
Attempts to open a path that has not been unveiled with fail with
ENOENT. If the unveiled path lacks sufficient permissions, it will fail
with EACCES.
Like pledge(), subsequent calls to unveil() with the same path can only
remove permissions, not add them.
Once you call unveil(nullptr, nullptr), the veil is locked, and it's no
longer possible to unveil any more paths for the process, ever.
This concept comes from OpenBSD, and their implementation does various
things differently, I'm sure. This is just a first implementation for
SerenityOS, and we'll keep improving on it as we go. :^)
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
The syscall is now called sys$open(), but it behaves like the old sys$openat().
In userspace, open_with_path_length() is made a wrapper over openat_with_path_length().
At the moment, the actual flags are ignored, but we correctly propagate them all
the way from the original mount() syscall to each custody that resides on the
mounted FS.
While I was updating syscalls to stop passing null-terminated strings,
I added some helpful struct types:
- StringArgument { const char*; size_t; }
- ImmutableBuffer<Data, Size> { const Data*; Size; }
- MutableBuffer<Data, Size> { Data*; Size; }
The Process class has some convenience functions for validating and
optionally extracting the contents from these structs:
- get_syscall_path_argument(StringArgument)
- validate_and_copy_string_from_user(StringArgument)
- validate(ImmutableBuffer)
- validate(MutableBuffer)
There's still so much code around this and I'm wondering if we should
generate most of it instead. Possible nice little project.
The chroot() syscall now allows the superuser to isolate a process into
a specific subtree of the filesystem. This is not strictly permanent,
as it is also possible for a superuser to break *out* of a chroot, but
it is a useful mechanism for isolating unprivileged processes.
The VFS now uses the current process's root_directory() as the root for
path resolution purposes. The root directory is stored as an uncached
Custody in the Process object.
Note that I'm developing some helper types in the Syscall namespace as
I go here. Once I settle on some nice types, I will convert all the
other syscalls to use them as well.
The userspace execve() wrapper now measures all the strings and puts
them in a neat and tidy structure on the stack.
This way we know exactly how much to copy in the kernel, and we don't
have to use the SMAP-violating validate_read_str(). :^)
This code never worked, as was never used for anything. We can build
a much better SHM implementation on top of TmpFS or similar when we
get to the point when we need one.
This patch introduces a syscall:
int set_thread_boost(int tid, int amount)
You can use this to add a permanent boost value to the effective thread
priority of any thread with your UID (or any thread in the system if
you are the superuser.)
This is quite crude, but opens up some interesting opportunities. :^)
Threads now have numeric priorities with a base priority in the 1-99
range.
Whenever a runnable thread is *not* scheduled, its effective priority
is incremented by 1. This is tracked in Thread::m_extra_priority.
The effective priority of a thread is m_priority + m_extra_priority.
When a runnable thread *is* scheduled, its m_extra_priority is reset to
zero and the effective priority returns to base.
This means that lower-priority threads will always eventually get
scheduled to run, once its effective priority becomes high enough to
exceed the base priority of threads "above" it.
The previous values for ThreadPriority (Low, Normal and High) are now
replaced as follows:
Low -> 10
Normal -> 30
High -> 50
In other words, it will take 20 ticks for a "Low" priority thread to
get to "Normal" effective priority, and another 20 to reach "High".
This is not perfect, and I've used some quite naive data structures,
but I think the mechanism will allow us to build various new and
interesting optimizations, and we can figure out better data structures
later on. :^)
This patch implements a simple version of the futex (fast userspace
mutex) API in the kernel and uses it to make the pthread_cond_t API's
block instead of busily sched_yield().
An arbitrary userspace address is passed to the kernel as a "token"
that identifies the futex and you can then FUTEX_WAIT and FUTEX_WAKE
that specific userspace address.
FUTEX_WAIT corresponds to pthread_cond_wait() and FUTEX_WAKE is used
for pthread_cond_signal() and pthread_cond_broadcast().
I'm pretty sure I'm missing something in this implementation, but it's
hopefully okay for a start. :^)
This patch adds a single "kernel info page" that is mappable read-only
by any process and contains the current time of day.
This is then used to implement a version of gettimeofday() that doesn't
have to make a syscall.
To protect against race condition issues, the info page also has a
serial number which is incremented whenever the kernel updates the
contents of the page. Make sure to verify that the serial number is the
same before and after reading the information you want from the page.
The kernel now supports basic profiling of all the threads in a process
by calling profiling_enable(pid_t). You finish the profiling by calling
profiling_disable(pid_t).
This all works by recording thread stacks when the timer interrupt
fires and the current thread is in a process being profiled.
Note that symbolication is deferred until profiling_disable() to avoid
adding more noise than necessary to the profile.
A simple "/bin/profile" command is included here that can be used to
start/stop profiling like so:
$ profile 10 on
... wait ...
$ profile 10 off
After a profile has been recorded, it can be fetched in /proc/profile
There are various limits (or "bugs") on this mechanism at the moment:
- Only one process can be profiled at a time.
- We allocate 8MB for the samples, if you use more space, things will
not work, and probably break a bit.
- Things will probably fall apart if the profiled process dies during
profiling, or while extracing /proc/profile
This patch makes SharedBuffer use a PurgeableVMObject as its underlying
memory object.
A new syscall is added to control the volatile flag of a SharedBuffer.
It's now possible to get purgeable memory by using mmap(MAP_PURGEABLE).
Purgeable memory has a "volatile" flag that can be set using madvise():
- madvise(..., MADV_SET_VOLATILE)
- madvise(..., MADV_SET_NONVOLATILE)
When in the "volatile" state, the kernel may take away the underlying
physical memory pages at any time, without notifying the owner.
This gives you a guilt discount when caching very large things. :^)
Setting a purgeable region to non-volatile will return whether or not
the memory has been taken away by the kernel while being volatile.
Basically, if madvise(..., MADV_SET_NONVOLATILE) returns 1, that means
the memory was purged while volatile, and whatever was in that piece
of memory needs to be reconstructed before use.
The main thread of each kernel/user process will take the name of
the process. Extra threads will get a fancy new name
"ProcessName[<tid>]".
Thread backtraces now list the thread name in addtion to tid.
Add the thread name to /proc/all (should it get its own proc
file?).
Add two new syscalls, set_thread_name and get_thread_name.
It's now possible to load a .o file into the kernel via a syscall.
The kernel will perform all the necessary ELF relocations, and then
call the "module_init" symbol in the loaded module.
Add an initial implementation of pthread attributes for:
* detach state (joinable, detached)
* schedule params (just priority)
* guard page size (as skeleton) (requires kernel support maybe?)
* stack size and user-provided stack location (4 or 8 MB only, must be aligned)
Add some tests too, to the thread test program.
Also, LibC: Move pthread declarations to sys/types.h, where they belong.
This can be implemented entirely in userspace by calling tcgetattr().
To avoid screwing up the syscall indexes, this patch also adds a
mechanism for removing a syscall without shifting the index of other
syscalls.
Note that ports will still have to be rebuilt after this change,
as their LibC code will try to make the isatty() syscall on startup.
It's now possible to block until another thread in the same process has
exited. We can also retrieve its exit value, which is whatever value it
passed to pthread_exit(). :^)
Some syscalls have to pass parameters through a struct, since we can
only fit 3 parameters with our calling convention.
This patch makes use of C++ structured binding to clean up the places
where we expand those parameters structs into local variables.