The function `KString::must_create()` can only be enforced
during early boot (that is, when `g_in_early_boot` is true), hence
the use of this function during runtime causes a `VERIFY` to assert,
leading to a Kernel Panic.
We should instead use `TRY()` along with `try_create()` to prevent
this from crashing whenever a USB device is inserted into the system,
and we don't have enough memory to allocate the device's KString.
Add a basic NVMe driver support to serenity
based on NVMe spec 1.4.
The driver can support multiple NVMe drives (subsystems).
But in a NVMe drive, the driver can support one controller
with multiple namespaces.
Each core will get a separate NVMe Queue.
As the system lacks MSI support, PIN based interrupts are
used for IO.
Tested the NVMe support by replacing IDE driver
with the NVMe driver :^)
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
Instead, allocate before constructing the object and pass NonnullOwnPtr
of KString to the object if needed. Some classes can determine their
names as they have a known attribute to look for or have a static name.
There is no use to create a temporary String of a char const* to just
cast it to a StringView on SysFSComponent construction again.
Also this could have lead to a UAF bug.
Previously, Virtio console ports would not show up in `/sys/dev/char/`.
Also adds support to `SystemServer` to create more than one console
port device in `/dev/` in the multiport case.
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
Instead, just ensure we pick the m_access_lock and then m_scan_lock when
doing a scan/re-scan of the PCI configuration space so we know nobody
can actually access the PCI configuration space during the scan.
The m_scan_lock is now a Spinlock, to ensure we cannot yield to other
process while we do the PCI configuration space scanning.
The platform independent Processor.h file includes the shared processor
code and includes the specific platform header file.
All references to the Arch/x86/Processor.h file have been replaced with
a reference to Arch/Processor.h.
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
This allows us to remove the PCI::get_interrupt_line API function. As a
result, this removes a bunch of not so great patterns that we used to
cache PCI interrupt line in many IRQHandler derived classes instead of
just using interrupt_number method of IRQHandler class.
This ensures we dont try to hold the PCI Access mutex under IRQ when
printing VirtIO debug logs (which is not allowed and results in an
assertion). This is also relatively free, as it requires no allocations
(we're just storing a pointer to the rodata section).
This fixes a Kernel Panic where the lazy allocation triggers inside an
ISR and grabs a mutex, which isn't allowed when interrupts are
disabled. This also fixes a bug where the mapping for VirtIO device
BARs is never allocated. #9876
This will somwhat help unify them also under the same SysFS directory in
the commit.
Also, it feels much more like this change reflects the reality that both
ACPI and the BIOS are part of the firmware on x86 computers.