/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include // Remove this once SMP is stable and can be enabled by default #define SCHEDULE_ON_ALL_PROCESSORS 0 namespace Kernel { class SchedulerPerProcessorData { AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData); AK_MAKE_NONMOVABLE(SchedulerPerProcessorData); public: SchedulerPerProcessorData() = default; WeakPtr m_pending_beneficiary; const char* m_pending_donate_reason { nullptr }; bool m_in_scheduler { true }; }; RecursiveSpinLock g_scheduler_lock; static u32 time_slice_for(const Thread& thread) { // One time slice unit == 4ms (assuming 250 ticks/second) if (thread.is_idle_thread()) return 1; return 2; } READONLY_AFTER_INIT Thread* g_finalizer; READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue; Atomic g_finalizer_has_work { false }; READONLY_AFTER_INIT static Process* s_colonel_process; struct ThreadReadyQueue { IntrusiveList, &Thread::m_ready_queue_node> thread_list; }; static SpinLock g_ready_queues_lock; static u32 g_ready_queues_mask; static constexpr u32 g_ready_queue_buckets = sizeof(g_ready_queues_mask) * 8; READONLY_AFTER_INIT static ThreadReadyQueue* g_ready_queues; // g_ready_queue_buckets entries static void dump_thread_list(); static inline u32 thread_priority_to_priority_index(u32 thread_priority) { // Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX // to a index into g_ready_queues where 0 is the highest priority bucket VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX); constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1; static_assert(thread_priority_count > 0); auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (g_ready_queue_buckets - 1); VERIFY(priority_bucket < g_ready_queue_buckets); return priority_bucket; } Thread& Scheduler::pull_next_runnable_thread() { auto affinity_mask = 1u << Processor::current().id(); ScopedSpinLock lock(g_ready_queues_lock); auto priority_mask = g_ready_queues_mask; while (priority_mask != 0) { auto priority = __builtin_ffsl(priority_mask); VERIFY(priority > 0); auto& ready_queue = g_ready_queues[--priority]; for (auto& thread : ready_queue.thread_list) { VERIFY(thread.m_runnable_priority == (int)priority); if (thread.is_active()) continue; if (!(thread.affinity() & affinity_mask)) continue; thread.m_runnable_priority = -1; ready_queue.thread_list.remove(thread); if (ready_queue.thread_list.is_empty()) g_ready_queues_mask &= ~(1u << priority); // Mark it as active because we are using this thread. This is similar // to comparing it with Processor::current_thread, but when there are // multiple processors there's no easy way to check whether the thread // is actually still needed. This prevents accidental finalization when // a thread is no longer in Running state, but running on another core. // We need to mark it active here so that this thread won't be // scheduled on another core if it were to be queued before actually // switching to it. // FIXME: Figure out a better way maybe? thread.set_active(true); return thread; } priority_mask &= ~(1u << priority); } return *Processor::idle_thread(); } bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity) { if (thread.is_idle_thread()) return true; ScopedSpinLock lock(g_ready_queues_lock); auto priority = thread.m_runnable_priority; if (priority < 0) { VERIFY(!thread.m_ready_queue_node.is_in_list()); return false; } if (check_affinity && !(thread.affinity() & (1 << Processor::current().id()))) return false; VERIFY(g_ready_queues_mask & (1u << priority)); auto& ready_queue = g_ready_queues[priority]; thread.m_runnable_priority = -1; ready_queue.thread_list.remove(thread); if (ready_queue.thread_list.is_empty()) g_ready_queues_mask &= ~(1u << priority); return true; } void Scheduler::queue_runnable_thread(Thread& thread) { VERIFY(g_scheduler_lock.own_lock()); if (thread.is_idle_thread()) return; auto priority = thread_priority_to_priority_index(thread.priority()); ScopedSpinLock lock(g_ready_queues_lock); VERIFY(thread.m_runnable_priority < 0); thread.m_runnable_priority = (int)priority; VERIFY(!thread.m_ready_queue_node.is_in_list()); auto& ready_queue = g_ready_queues[priority]; bool was_empty = ready_queue.thread_list.is_empty(); ready_queue.thread_list.append(thread); if (was_empty) g_ready_queues_mask |= (1u << priority); } UNMAP_AFTER_INIT void Scheduler::start() { VERIFY_INTERRUPTS_DISABLED(); // We need to acquire our scheduler lock, which will be released // by the idle thread once control transferred there g_scheduler_lock.lock(); auto& processor = Processor::current(); processor.set_scheduler_data(*new SchedulerPerProcessorData()); VERIFY(processor.is_initialized()); auto& idle_thread = *Processor::idle_thread(); VERIFY(processor.current_thread() == &idle_thread); idle_thread.set_ticks_left(time_slice_for(idle_thread)); idle_thread.did_schedule(); idle_thread.set_initialized(true); processor.init_context(idle_thread, false); idle_thread.set_state(Thread::Running); VERIFY(idle_thread.affinity() == (1u << processor.get_id())); processor.initialize_context_switching(idle_thread); VERIFY_NOT_REACHED(); } bool Scheduler::pick_next() { VERIFY_INTERRUPTS_DISABLED(); auto current_thread = Thread::current(); // Set the m_in_scheduler flag before acquiring the spinlock. This // prevents a recursive call into Scheduler::invoke_async upon // leaving the scheduler lock. ScopedCritical critical; auto& scheduler_data = Processor::current().get_scheduler_data(); scheduler_data.m_in_scheduler = true; ScopeGuard guard( []() { // We may be on a different processor after we got switched // back to this thread! auto& scheduler_data = Processor::current().get_scheduler_data(); VERIFY(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; }); ScopedSpinLock lock(g_scheduler_lock); if (current_thread->should_die() && current_thread->state() == Thread::Running) { // Rather than immediately killing threads, yanking the kernel stack // away from them (which can lead to e.g. reference leaks), we always // allow Thread::wait_on to return. This allows the kernel stack to // clean up and eventually we'll get here shortly before transitioning // back to user mode (from Processor::exit_trap). At this point we // no longer want to schedule this thread. We can't wait until // Scheduler::enter_current because we don't want to allow it to // transition back to user mode. if constexpr (SCHEDULER_DEBUG) dbgln("Scheduler[{}]: Thread {} is dying", Processor::id(), *current_thread); current_thread->set_state(Thread::Dying); } if constexpr (SCHEDULER_RUNNABLE_DEBUG) { dump_thread_list(); } auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref(); if (pending_beneficiary && dequeue_runnable_thread(*pending_beneficiary, true)) { // The thread we're supposed to donate to still exists and we can const char* reason = scheduler_data.m_pending_donate_reason; scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; // We need to leave our first critical section before switching context, // but since we're still holding the scheduler lock we're still in a critical section critical.leave(); dbgln_if(SCHEDULER_DEBUG, "Processing pending donate to {} reason={}", *pending_beneficiary, reason); return donate_to_and_switch(pending_beneficiary.ptr(), reason); } // Either we're not donating or the beneficiary disappeared. // Either way clear any pending information scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; auto& thread_to_schedule = pull_next_runnable_thread(); if constexpr (SCHEDULER_DEBUG) { dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}", Processor::id(), thread_to_schedule, thread_to_schedule.tss().cs, thread_to_schedule.tss().eip); } // We need to leave our first critical section before switching context, // but since we're still holding the scheduler lock we're still in a critical section critical.leave(); thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule)); return context_switch(&thread_to_schedule); } bool Scheduler::yield() { InterruptDisabler disabler; auto& proc = Processor::current(); auto& scheduler_data = proc.get_scheduler_data(); // Clear any pending beneficiary scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; auto current_thread = Thread::current(); dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", proc.get_id(), *current_thread, proc.in_irq()); VERIFY(current_thread != nullptr); if (proc.in_irq() || proc.in_critical()) { // If we're handling an IRQ we can't switch context, or we're in // a critical section where we don't want to switch contexts, then // delay until exiting the trap or critical section proc.invoke_scheduler_async(); return false; } if (!Scheduler::pick_next()) return false; if constexpr (SCHEDULER_DEBUG) dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::id(), *current_thread, Processor::current().in_irq()); return true; } bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason) { VERIFY(g_scheduler_lock.own_lock()); auto& proc = Processor::current(); VERIFY(proc.in_critical() == 1); unsigned ticks_left = Thread::current()->ticks_left(); if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1) return Scheduler::yield(); unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary)); dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.get_id(), ticks_to_donate, *beneficiary, reason); beneficiary->set_ticks_left(ticks_to_donate); return Scheduler::context_switch(beneficiary); } bool Scheduler::donate_to(RefPtr& beneficiary, const char* reason) { VERIFY(beneficiary); if (beneficiary == Thread::current()) return Scheduler::yield(); // Set the m_in_scheduler flag before acquiring the spinlock. This // prevents a recursive call into Scheduler::invoke_async upon // leaving the scheduler lock. ScopedCritical critical; auto& proc = Processor::current(); auto& scheduler_data = proc.get_scheduler_data(); scheduler_data.m_in_scheduler = true; ScopeGuard guard( []() { // We may be on a different processor after we got switched // back to this thread! auto& scheduler_data = Processor::current().get_scheduler_data(); VERIFY(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; }); VERIFY(!proc.in_irq()); if (proc.in_critical() > 1) { scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary scheduler_data.m_pending_donate_reason = reason; proc.invoke_scheduler_async(); return false; } ScopedSpinLock lock(g_scheduler_lock); // "Leave" the critical section before switching context. Since we // still hold the scheduler lock, we're not actually leaving it. // Processor::switch_context expects Processor::in_critical() to be 1 critical.leave(); donate_to_and_switch(beneficiary, reason); return false; } bool Scheduler::context_switch(Thread* thread) { thread->did_schedule(); auto from_thread = Thread::current(); if (from_thread == thread) return false; if (from_thread) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (from_thread->state() == Thread::Running) from_thread->set_state(Thread::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip); #endif } auto& proc = Processor::current(); if (!thread->is_initialized()) { proc.init_context(*thread, false); thread->set_initialized(true); } thread->set_state(Thread::Running); proc.switch_context(from_thread, thread); // NOTE: from_thread at this point reflects the thread we were // switched from, and thread reflects Thread::current() enter_current(*from_thread, false); VERIFY(thread == Thread::current()); #if ARCH(I386) if (thread->process().is_user_process()) { auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags); if (iopl != 0) { PANIC("Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl); } } #endif return true; } void Scheduler::enter_current(Thread& prev_thread, bool is_first) { VERIFY(g_scheduler_lock.own_lock()); prev_thread.set_active(false); if (prev_thread.state() == Thread::Dying) { // If the thread we switched from is marked as dying, then notify // the finalizer. Note that as soon as we leave the scheduler lock // the finalizer may free from_thread! notify_finalizer(); } else if (!is_first) { // Check if we have any signals we should deliver (even if we don't // end up switching to another thread). auto current_thread = Thread::current(); if (!current_thread->is_in_block() && current_thread->previous_mode() != Thread::PreviousMode::KernelMode) { ScopedSpinLock lock(current_thread->get_lock()); if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) { current_thread->dispatch_one_pending_signal(); } } } } void Scheduler::leave_on_first_switch(u32 flags) { // This is called when a thread is switched into for the first time. // At this point, enter_current has already be called, but because // Scheduler::context_switch is not in the call stack we need to // clean up and release locks manually here g_scheduler_lock.unlock(flags); auto& scheduler_data = Processor::current().get_scheduler_data(); VERIFY(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; } void Scheduler::prepare_after_exec() { // This is called after exec() when doing a context "switch" into // the new process. This is called from Processor::assume_context VERIFY(g_scheduler_lock.own_lock()); auto& scheduler_data = Processor::current().get_scheduler_data(); VERIFY(!scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = true; } void Scheduler::prepare_for_idle_loop() { // This is called when the CPU finished setting up the idle loop // and is about to run it. We need to acquire he scheduler lock VERIFY(!g_scheduler_lock.own_lock()); g_scheduler_lock.lock(); auto& scheduler_data = Processor::current().get_scheduler_data(); VERIFY(!scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = true; } Process* Scheduler::colonel() { VERIFY(s_colonel_process); return s_colonel_process; } UNMAP_AFTER_INIT void Scheduler::initialize() { VERIFY(&Processor::current() != nullptr); // sanity check RefPtr idle_thread; g_finalizer_wait_queue = new WaitQueue; g_ready_queues = new ThreadReadyQueue[g_ready_queue_buckets]; g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release); s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref(); VERIFY(s_colonel_process); VERIFY(idle_thread); idle_thread->set_priority(THREAD_PRIORITY_MIN); idle_thread->set_name(StringView("idle thread #0")); set_idle_thread(idle_thread); } UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread) { idle_thread->set_idle_thread(); Processor::current().set_idle_thread(*idle_thread); Processor::current().set_current_thread(*idle_thread); } UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu) { VERIFY(cpu != 0); // This function is called on the bsp, but creates an idle thread for another AP VERIFY(Processor::is_bootstrap_processor()); VERIFY(s_colonel_process); Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::formatted("idle thread #{}", cpu), 1 << cpu, false); VERIFY(idle_thread); return idle_thread; } void Scheduler::timer_tick(const RegisterState& regs) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(Processor::current().in_irq()); auto current_thread = Processor::current_thread(); if (!current_thread) return; // Sanity checks VERIFY(current_thread->current_trap()); VERIFY(current_thread->current_trap()->regs == ®s); #if !SCHEDULE_ON_ALL_PROCESSORS if (!Processor::is_bootstrap_processor()) return; // TODO: This prevents scheduling on other CPUs! #endif PerformanceEventBuffer* perf_events = nullptr; if (g_profiling_all_threads) { VERIFY(g_global_perf_events); // FIXME: We currently don't collect samples while idle. // That will be an interesting mode to add in the future. :^) if (current_thread != Processor::current().idle_thread()) { perf_events = g_global_perf_events; } } else if (current_thread->process().is_profiling()) { VERIFY(current_thread->process().perf_events()); perf_events = current_thread->process().perf_events(); } if (perf_events) { [[maybe_unused]] auto rc = perf_events->append_with_eip_and_ebp( current_thread->pid(), current_thread->tid(), regs.eip, regs.ebp, PERF_EVENT_SAMPLE, 0, 0, nullptr); } if (current_thread->tick()) return; VERIFY_INTERRUPTS_DISABLED(); VERIFY(Processor::current().in_irq()); Processor::current().invoke_scheduler_async(); } void Scheduler::invoke_async() { VERIFY_INTERRUPTS_DISABLED(); auto& proc = Processor::current(); VERIFY(!proc.in_irq()); // Since this function is called when leaving critical sections (such // as a SpinLock), we need to check if we're not already doing this // to prevent recursion if (!proc.get_scheduler_data().m_in_scheduler) pick_next(); } void Scheduler::yield_from_critical() { auto& proc = Processor::current(); VERIFY(proc.in_critical()); VERIFY(!proc.in_irq()); yield(); // Flag a context switch u32 prev_flags; u32 prev_crit = Processor::current().clear_critical(prev_flags, false); // Note, we may now be on a different CPU! Processor::current().restore_critical(prev_crit, prev_flags); } void Scheduler::notify_finalizer() { if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false) g_finalizer_wait_queue->wake_all(); } void Scheduler::idle_loop(void*) { auto& proc = Processor::current(); dbgln("Scheduler[{}]: idle loop running", proc.get_id()); VERIFY(are_interrupts_enabled()); for (;;) { proc.idle_begin(); asm("hlt"); proc.idle_end(); VERIFY_INTERRUPTS_ENABLED(); #if SCHEDULE_ON_ALL_PROCESSORS yield(); #else if (Processor::current().id() == 0) yield(); #endif } } void Scheduler::dump_scheduler_state() { dump_thread_list(); } void dump_thread_list() { dbgln("Scheduler thread list for processor {}:", Processor::id()); auto get_cs = [](Thread& thread) -> u16 { if (!thread.current_trap()) return thread.tss().cs; return thread.get_register_dump_from_stack().cs; }; auto get_eip = [](Thread& thread) -> u32 { if (!thread.current_trap()) return thread.tss().eip; return thread.get_register_dump_from_stack().eip; }; Thread::for_each([&](Thread& thread) -> IterationDecision { switch (thread.state()) { case Thread::Dying: dbgln(" {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})", thread.state_string(), thread, get_cs(thread), get_eip(thread), thread.is_finalizable(), thread.times_scheduled()); break; default: dbgln(" {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})", thread.state_string(), thread.priority(), thread, get_cs(thread), get_eip(thread), thread.times_scheduled()); break; } return IterationDecision::Continue; }); } }