/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include namespace Kernel { static AK::Singleton>> s_arp_table; class ARPTableBlocker : public Thread::Blocker { public: ARPTableBlocker(IPv4Address ip_addr, Optional& addr); virtual StringView state_string() const override { return "Routing (ARP)"sv; } virtual Type blocker_type() const override { return Type::Routing; } virtual bool should_block() override { return m_should_block; } virtual void not_blocking(bool) override; bool unblock(bool from_add_blocker, const IPv4Address& ip_addr, const MACAddress& addr) { if (m_ip_addr != ip_addr) return false; { ScopedSpinLock lock(m_lock); if (m_did_unblock) return false; m_did_unblock = true; m_addr = addr; } if (!from_add_blocker) unblock_from_blocker(); return true; } const IPv4Address& ip_addr() const { return m_ip_addr; } private: const IPv4Address m_ip_addr; Optional& m_addr; bool m_did_unblock { false }; bool m_should_block { true }; }; class ARPTableBlockCondition : public Thread::BlockCondition { public: void unblock(const IPv4Address& ip_addr, const MACAddress& addr) { BlockCondition::unblock([&](auto& b, void*, bool&) { VERIFY(b.blocker_type() == Thread::Blocker::Type::Routing); auto& blocker = static_cast(b); return blocker.unblock(false, ip_addr, addr); }); } protected: virtual bool should_add_blocker(Thread::Blocker& b, void*) override { VERIFY(b.blocker_type() == Thread::Blocker::Type::Routing); auto& blocker = static_cast(b); auto val = arp_table().with_shared([&](const auto& table) -> auto { return table.get(blocker.ip_addr()); }); if (!val.has_value()) return true; return blocker.unblock(true, blocker.ip_addr(), val.value()); } }; static AK::Singleton s_arp_table_block_condition; ARPTableBlocker::ARPTableBlocker(IPv4Address ip_addr, Optional& addr) : m_ip_addr(ip_addr) , m_addr(addr) { if (!set_block_condition(*s_arp_table_block_condition)) m_should_block = false; } void ARPTableBlocker::not_blocking(bool timeout_in_past) { VERIFY(timeout_in_past || !m_should_block); auto addr = arp_table().with_shared([&](const auto& table) -> auto { return table.get(ip_addr()); }); ScopedSpinLock lock(m_lock); if (!m_did_unblock) { m_did_unblock = true; m_addr = move(addr); } } ProtectedValue>& arp_table() { return *s_arp_table; } void update_arp_table(const IPv4Address& ip_addr, const MACAddress& addr, UpdateArp update) { arp_table().with_exclusive([&](auto& table) { if (update == UpdateArp::Set) table.set(ip_addr, addr); if (update == UpdateArp::Delete) table.remove(ip_addr); }); s_arp_table_block_condition->unblock(ip_addr, addr); if constexpr (ROUTING_DEBUG) { arp_table().with_shared([&](const auto& table) { dmesgln("ARP table ({} entries):", table.size()); for (auto& it : table) dmesgln("{} :: {}", it.value.to_string(), it.key.to_string()); }); } } bool RoutingDecision::is_zero() const { return adapter.is_null() || next_hop.is_zero(); } static MACAddress multicast_ethernet_address(IPv4Address const& address) { return MACAddress { 0x01, 0x00, 0x5e, (u8)(address[1] & 0x7f), address[2], address[3] }; } RoutingDecision route_to(const IPv4Address& target, const IPv4Address& source, const RefPtr through) { auto matches = [&](auto& adapter) { if (!through) return true; return through == adapter; }; auto if_matches = [&](auto& adapter, const auto& mac) -> RoutingDecision { if (!matches(adapter)) return { nullptr, {} }; return { adapter, mac }; }; if (target[0] == 0 && target[1] == 0 && target[2] == 0 && target[3] == 0) return if_matches(*NetworkingManagement::the().loopback_adapter(), NetworkingManagement::the().loopback_adapter()->mac_address()); if (target[0] == 127) return if_matches(*NetworkingManagement::the().loopback_adapter(), NetworkingManagement::the().loopback_adapter()->mac_address()); auto target_addr = target.to_u32(); auto source_addr = source.to_u32(); RefPtr local_adapter = nullptr; RefPtr gateway_adapter = nullptr; NetworkingManagement::the().for_each([source_addr, &target_addr, &local_adapter, &gateway_adapter, &matches, &through](NetworkAdapter& adapter) { auto adapter_addr = adapter.ipv4_address().to_u32(); auto adapter_mask = adapter.ipv4_netmask().to_u32(); if (target_addr == adapter_addr) { local_adapter = NetworkingManagement::the().loopback_adapter(); return; } if (!adapter.link_up() || (adapter_addr == 0 && !through)) return; if (source_addr != 0 && source_addr != adapter_addr) return; if ((target_addr & adapter_mask) == (adapter_addr & adapter_mask) && matches(adapter)) local_adapter = adapter; if (adapter.ipv4_gateway().to_u32() != 0 && matches(adapter)) gateway_adapter = adapter; }); if (local_adapter && target == local_adapter->ipv4_address()) return { local_adapter, local_adapter->mac_address() }; if (!local_adapter && !gateway_adapter) { dbgln_if(ROUTING_DEBUG, "Routing: Couldn't find a suitable adapter for route to {}", target); return { nullptr, {} }; } RefPtr adapter = nullptr; IPv4Address next_hop_ip; if (local_adapter) { dbgln_if(ROUTING_DEBUG, "Routing: Got adapter for route (direct): {} ({}/{}) for {}", local_adapter->name(), local_adapter->ipv4_address(), local_adapter->ipv4_netmask(), target); adapter = local_adapter; next_hop_ip = target; } else if (gateway_adapter) { dbgln_if(ROUTING_DEBUG, "Routing: Got adapter for route (using gateway {}): {} ({}/{}) for {}", gateway_adapter->ipv4_gateway(), gateway_adapter->name(), gateway_adapter->ipv4_address(), gateway_adapter->ipv4_netmask(), target); adapter = gateway_adapter; next_hop_ip = gateway_adapter->ipv4_gateway(); } else { return { nullptr, {} }; } // If it's a broadcast, we already know everything we need to know. // FIXME: We should also deal with the case where `target_addr` is // a broadcast to a subnet rather than a full broadcast. if (target_addr == 0xffffffff && matches(adapter)) return { adapter, { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; if (adapter == NetworkingManagement::the().loopback_adapter()) return { adapter, adapter->mac_address() }; if ((target_addr & IPv4Address { 240, 0, 0, 0 }.to_u32()) == IPv4Address { 224, 0, 0, 0 }.to_u32()) return { adapter, multicast_ethernet_address(target) }; { auto addr = arp_table().with_shared([&](const auto& table) -> auto { return table.get(next_hop_ip); }); if (addr.has_value()) { dbgln_if(ROUTING_DEBUG, "Routing: Using cached ARP entry for {} ({})", next_hop_ip, addr.value().to_string()); return { adapter, addr.value() }; } } dbgln_if(ROUTING_DEBUG, "Routing: Sending ARP request via adapter {} for IPv4 address {}", adapter->name(), next_hop_ip); ARPPacket request; request.set_operation(ARPOperation::Request); request.set_target_hardware_address({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }); request.set_target_protocol_address(next_hop_ip); request.set_sender_hardware_address(adapter->mac_address()); request.set_sender_protocol_address(adapter->ipv4_address()); adapter->send({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, request); if (NetworkTask::is_current()) { // FIXME: Waiting for the ARP response from inside the NetworkTask would // deadlock, so let's hope that whoever called route_to() tries again in a bit. dbgln_if(ROUTING_DEBUG, "Routing: Not waiting for ARP response from inside NetworkTask, sent ARP request using adapter {} for {}", adapter->name(), target); return { nullptr, {} }; } Optional addr; if (!Thread::current()->block({}, next_hop_ip, addr).was_interrupted()) { if (addr.has_value()) { dbgln_if(ROUTING_DEBUG, "Routing: Got ARP response using adapter {} for {} ({})", adapter->name(), next_hop_ip, addr.value().to_string()); return { adapter, addr.value() }; } } dbgln_if(ROUTING_DEBUG, "Routing: Couldn't find route using adapter {} for {}", adapter->name(), target); return { nullptr, {} }; } }