/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2019-2020, Shannon Booth * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include using Test::Crash; #ifdef __clang__ # pragma clang optimize off #else # pragma GCC optimize("O0") #endif int main(int argc, char** argv) { bool do_all_crash_types = false; bool do_segmentation_violation = false; bool do_division_by_zero = false; bool do_illegal_instruction = false; bool do_abort = false; bool do_write_to_uninitialized_malloc_memory = false; bool do_write_to_freed_memory = false; bool do_write_to_read_only_memory = false; bool do_read_from_uninitialized_malloc_memory = false; bool do_read_from_freed_memory = false; bool do_invalid_stack_pointer_on_syscall = false; bool do_invalid_stack_pointer_on_page_fault = false; bool do_syscall_from_writeable_memory = false; bool do_execute_non_executable_memory = false; bool do_trigger_user_mode_instruction_prevention = false; bool do_use_io_instruction = false; bool do_read_cpu_counter = false; bool do_pledge_violation = false; bool do_failing_assertion = false; bool do_deref_null_refptr = false; auto args_parser = Core::ArgsParser(); args_parser.set_general_help( "Exercise error-handling paths of the execution environment " "(i.e., Kernel or UE) by crashing in many different ways."); args_parser.add_option(do_all_crash_types, "Test that all of the following crash types crash as expected", nullptr, 'A'); args_parser.add_option(do_segmentation_violation, "Perform a segmentation violation by dereferencing an invalid pointer", nullptr, 's'); args_parser.add_option(do_division_by_zero, "Perform a division by zero", nullptr, 'd'); args_parser.add_option(do_illegal_instruction, "Execute an illegal CPU instruction", nullptr, 'i'); args_parser.add_option(do_abort, "Call `abort()`", nullptr, 'a'); args_parser.add_option(do_read_from_uninitialized_malloc_memory, "Read a pointer from uninitialized malloc memory, then read from it", nullptr, 'm'); args_parser.add_option(do_read_from_freed_memory, "Read a pointer from memory freed using `free()`, then read from it", nullptr, 'f'); args_parser.add_option(do_write_to_uninitialized_malloc_memory, "Read a pointer from uninitialized malloc memory, then write to it", nullptr, 'M'); args_parser.add_option(do_write_to_freed_memory, "Read a pointer from memory freed using `free()`, then write to it", nullptr, 'F'); args_parser.add_option(do_write_to_read_only_memory, "Write to read-only memory", nullptr, 'r'); args_parser.add_option(do_invalid_stack_pointer_on_syscall, "Make a syscall while using an invalid stack pointer", nullptr, 'T'); args_parser.add_option(do_invalid_stack_pointer_on_page_fault, "Trigger a page fault while using an invalid stack pointer", nullptr, 't'); args_parser.add_option(do_syscall_from_writeable_memory, "Make a syscall from writeable memory", nullptr, 'S'); args_parser.add_option(do_execute_non_executable_memory, "Attempt to execute non-executable memory (not mapped with PROT_EXEC)", nullptr, 'X'); args_parser.add_option(do_trigger_user_mode_instruction_prevention, "Attempt to trigger an x86 User Mode Instruction Prevention fault", nullptr, 'U'); args_parser.add_option(do_use_io_instruction, "Use an x86 I/O instruction in userspace", nullptr, 'I'); args_parser.add_option(do_read_cpu_counter, "Read the x86 TSC (Time Stamp Counter) directly", nullptr, 'c'); args_parser.add_option(do_pledge_violation, "Violate pledge()'d promises", nullptr, 'p'); args_parser.add_option(do_failing_assertion, "Perform a failing assertion", nullptr, 'n'); args_parser.add_option(do_deref_null_refptr, "Dereference a null RefPtr", nullptr, 'R'); if (argc != 2) { args_parser.print_usage(stderr, argv[0]); exit(1); } args_parser.parse(argc, argv); Crash::RunType run_type = do_all_crash_types ? Crash::RunType::UsingChildProcess : Crash::RunType::UsingCurrentProcess; if (do_segmentation_violation || do_all_crash_types) { Crash("Segmentation violation", []() { volatile int* crashme = nullptr; *crashme = 0xbeef; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_division_by_zero || do_all_crash_types) { Crash("Division by zero", []() { volatile int lala = 10; volatile int zero = 0; [[maybe_unused]] volatile int test = lala / zero; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_illegal_instruction || do_all_crash_types) { Crash("Illegal instruction", []() { asm volatile("ud2"); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_abort || do_all_crash_types) { Crash("Abort", []() { abort(); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_read_from_uninitialized_malloc_memory || do_all_crash_types) { Crash("Read from uninitialized malloc memory", []() { auto* uninitialized_memory = (volatile u32**)malloc(1024); if (!uninitialized_memory) return Crash::Failure::UnexpectedError; [[maybe_unused]] volatile auto x = uninitialized_memory[0][0]; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_read_from_freed_memory || do_all_crash_types) { Crash("Read from freed memory", []() { auto* uninitialized_memory = (volatile u32**)malloc(1024); if (!uninitialized_memory) return Crash::Failure::UnexpectedError; free(uninitialized_memory); [[maybe_unused]] volatile auto x = uninitialized_memory[4][0]; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_write_to_uninitialized_malloc_memory || do_all_crash_types) { Crash("Write to uninitialized malloc memory", []() { auto* uninitialized_memory = (volatile u32**)malloc(1024); if (!uninitialized_memory) return Crash::Failure::UnexpectedError; uninitialized_memory[4][0] = 1; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_write_to_freed_memory || do_all_crash_types) { Crash("Write to freed memory", []() { auto* uninitialized_memory = (volatile u32**)malloc(1024); if (!uninitialized_memory) return Crash::Failure::UnexpectedError; free(uninitialized_memory); uninitialized_memory[4][0] = 1; return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_write_to_read_only_memory || do_all_crash_types) { Crash("Write to read only memory", []() { auto* ptr = (u8*)mmap(nullptr, 4096, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, 0, 0); if (ptr == MAP_FAILED) return Crash::Failure::UnexpectedError; *ptr = 'x'; // This should work fine. int rc = mprotect(ptr, 4096, PROT_READ); if (rc != 0 || *ptr != 'x') return Crash::Failure::UnexpectedError; *ptr = 'y'; // This should crash! return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_invalid_stack_pointer_on_syscall || do_all_crash_types) { Crash("Invalid stack pointer on syscall", []() { u8* makeshift_stack = (u8*)mmap(nullptr, 0, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_STACK, 0, 0); if (!makeshift_stack) return Crash::Failure::UnexpectedError; u8* makeshift_esp = makeshift_stack + 2048; asm volatile("mov %%eax, %%esp" ::"a"(makeshift_esp)); getuid(); dbgln("Survived syscall with MAP_STACK stack"); u8* bad_stack = (u8*)mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); if (!bad_stack) return Crash::Failure::UnexpectedError; u8* bad_esp = bad_stack + 2048; asm volatile("mov %%eax, %%esp" ::"a"(bad_esp)); getuid(); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_invalid_stack_pointer_on_page_fault || do_all_crash_types) { Crash("Invalid stack pointer on page fault", []() { u8* bad_stack = (u8*)mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); if (!bad_stack) return Crash::Failure::UnexpectedError; u8* bad_esp = bad_stack + 2048; #ifndef __LP64__ asm volatile("mov %%eax, %%esp" ::"a"(bad_esp)); asm volatile("pushl $0"); #else asm volatile("movq %%rax, %%rsp" ::"a"(bad_esp)); asm volatile("pushq $0"); #endif return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_syscall_from_writeable_memory || do_all_crash_types) { Crash("Syscall from writable memory", []() { u8 buffer[] = { 0xb8, Syscall::SC_getuid, 0, 0, 0, 0xcd, 0x82 }; ((void (*)())buffer)(); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_execute_non_executable_memory || do_all_crash_types) { Crash("Execute non executable memory", []() { auto* ptr = (u8*)mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); if (ptr == MAP_FAILED) return Crash::Failure::UnexpectedError; ptr[0] = 0xc3; // ret typedef void* (*CrashyFunctionPtr)(); ((CrashyFunctionPtr)ptr)(); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_trigger_user_mode_instruction_prevention || do_all_crash_types) { Crash("Trigger x86 User Mode Instruction Prevention", []() { asm volatile("str %eax"); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_use_io_instruction || do_all_crash_types) { Crash("Attempt to use an I/O instruction", [] { u8 keyboard_status = IO::in8(0x64); outln("Keyboard status: {:#02x}", keyboard_status); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_read_cpu_counter || do_all_crash_types) { Crash("Read the CPU timestamp counter", [] { asm volatile("rdtsc"); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_pledge_violation || do_all_crash_types) { Crash("Violate pledge()'d promises", [] { if (pledge("", nullptr) < 0) { perror("pledge"); return Crash::Failure::DidNotCrash; } outln("Didn't pledge 'stdio', this should fail!"); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_failing_assertion || do_all_crash_types) { Crash("Perform a failing assertion", [] { VERIFY(1 == 2); return Crash::Failure::DidNotCrash; }).run(run_type); } if (do_deref_null_refptr || do_all_crash_types) { Crash("Dereference a null RefPtr", [] { RefPtr p; *p; return Crash::Failure::DidNotCrash; }).run(run_type); } return 0; }