#include #include #include #include #include InlineLinkedList* g_threads; static const dword default_kernel_stack_size = 16384; static const dword default_userspace_stack_size = 65536; Thread::Thread(Process& process) : m_process(process) , m_tid(process.m_next_tid++) { dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid()); set_default_signal_dispositions(); m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16); memset(&m_tss, 0, sizeof(m_tss)); // Only IF is set when a process boots. m_tss.eflags = 0x0202; word cs, ds, ss; if (m_process.is_ring0()) { cs = 0x08; ds = 0x10; ss = 0x10; } else { cs = 0x1b; ds = 0x23; ss = 0x23; } m_tss.ds = ds; m_tss.es = ds; m_tss.fs = ds; m_tss.gs = ds; m_tss.ss = ss; m_tss.cs = cs; m_tss.cr3 = m_process.page_directory().cr3(); if (m_process.is_ring0()) { // FIXME: This memory is leaked. // But uh, there's also no kernel process termination, so I guess it's not technically leaked... dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size); m_tss.esp = (stack_bottom + default_kernel_stack_size) & 0xffffff8; } else { // Ring3 processes need a separate stack for Ring0. m_kernel_stack = kmalloc(default_kernel_stack_size); m_tss.ss0 = 0x10; m_tss.esp0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8; } // HACK: Ring2 SS in the TSS is the current PID. m_tss.ss2 = m_process.pid(); m_far_ptr.offset = 0x98765432; if (m_process.pid() != 0) { InterruptDisabler disabler; g_threads->prepend(this); } } Thread::~Thread() { dbgprintf("~Thread{%p}\n", this); kfree_aligned(m_fpu_state); { InterruptDisabler disabler; g_threads->remove(this); } if (g_last_fpu_thread == this) g_last_fpu_thread = nullptr; if (selector()) gdt_free_entry(selector()); if (m_kernel_stack) { kfree(m_kernel_stack); m_kernel_stack = nullptr; } if (m_kernel_stack_for_signal_handler) { kfree(m_kernel_stack_for_signal_handler); m_kernel_stack_for_signal_handler = nullptr; } } void Thread::unblock() { if (current == this) { m_state = Thread::Running; return; } ASSERT(m_state != Thread::Runnable && m_state != Thread::Running); m_state = Thread::Runnable; } void Thread::snooze_until(Alarm& alarm) { m_snoozing_alarm = &alarm; block(Thread::BlockedSnoozing); Scheduler::yield(); } void Thread::block(Thread::State new_state) { bool did_unlock = process().big_lock().unlock_if_locked(); if (state() != Thread::Running) { kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state())); } ASSERT(state() == Thread::Running); m_was_interrupted_while_blocked = false; set_state(new_state); Scheduler::yield(); if (did_unlock) process().big_lock().lock(); } void Thread::sleep(dword ticks) { ASSERT(state() == Thread::Running); current->set_wakeup_time(g_uptime + ticks); current->block(Thread::BlockedSleep); } const char* to_string(Thread::State state) { switch (state) { case Thread::Invalid: return "Invalid"; case Thread::Runnable: return "Runnable"; case Thread::Running: return "Running"; case Thread::Dying: return "Dying"; case Thread::Dead: return "Dead"; case Thread::Stopped: return "Stopped"; case Thread::Skip1SchedulerPass: return "Skip1"; case Thread::Skip0SchedulerPasses: return "Skip0"; case Thread::BlockedSleep: return "Sleep"; case Thread::BlockedWait: return "Wait"; case Thread::BlockedRead: return "Read"; case Thread::BlockedWrite: return "Write"; case Thread::BlockedSignal: return "Signal"; case Thread::BlockedSelect: return "Select"; case Thread::BlockedLurking: return "Lurking"; case Thread::BlockedConnect: return "Connect"; case Thread::BlockedReceive: return "Receive"; case Thread::BlockedSnoozing: return "Snoozing"; } kprintf("to_string(Thread::State): Invalid state: %u\n", state); ASSERT_NOT_REACHED(); return nullptr; } void Thread::finalize() { dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid()); m_blocked_socket = nullptr; set_state(Thread::State::Dead); if (this == &m_process.main_thread()) m_process.finalize(); } void Thread::finalize_dying_threads() { Vector dying_threads; { InterruptDisabler disabler; for_each_in_state(Thread::State::Dying, [&] (Thread& thread) { dying_threads.append(&thread); }); } for (auto* thread : dying_threads) thread->finalize(); } bool Thread::tick() { ++m_ticks; if (tss().cs & 3) ++m_process.m_ticks_in_user; else ++m_process.m_ticks_in_kernel; return --m_ticks_left; } void Thread::send_signal(byte signal, Process* sender) { ASSERT(signal < 32); if (sender) dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid()); else dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid()); InterruptDisabler disabler; m_pending_signals |= 1 << signal; } bool Thread::has_unmasked_pending_signals() const { return m_pending_signals & ~m_signal_mask; } ShouldUnblockThread Thread::dispatch_one_pending_signal() { ASSERT_INTERRUPTS_DISABLED(); dword signal_candidates = m_pending_signals & ~m_signal_mask; ASSERT(signal_candidates); byte signal = 0; for (; signal < 32; ++signal) { if (signal_candidates & (1 << signal)) { break; } } return dispatch_signal(signal); } enum class DefaultSignalAction { Terminate, Ignore, DumpCore, Stop, Continue, }; DefaultSignalAction default_signal_action(byte signal) { ASSERT(signal && signal < NSIG); switch (signal) { case SIGHUP: case SIGINT: case SIGKILL: case SIGPIPE: case SIGALRM: case SIGUSR1: case SIGUSR2: case SIGVTALRM: case SIGSTKFLT: case SIGIO: case SIGPROF: case SIGTERM: case SIGPWR: return DefaultSignalAction::Terminate; case SIGCHLD: case SIGURG: case SIGWINCH: return DefaultSignalAction::Ignore; case SIGQUIT: case SIGILL: case SIGTRAP: case SIGABRT: case SIGBUS: case SIGFPE: case SIGSEGV: case SIGXCPU: case SIGXFSZ: case SIGSYS: return DefaultSignalAction::DumpCore; case SIGCONT: return DefaultSignalAction::Continue; case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: return DefaultSignalAction::Stop; } ASSERT_NOT_REACHED(); } ShouldUnblockThread Thread::dispatch_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); #ifdef SIGNAL_DEBUG kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal); #endif auto& action = m_signal_action_data[signal]; // FIXME: Implement SA_SIGINFO signal handlers. ASSERT(!(action.flags & SA_SIGINFO)); // Mark this signal as handled. m_pending_signals &= ~(1 << signal); if (signal == SIGSTOP) { set_state(Stopped); return ShouldUnblockThread::No; } if (signal == SIGCONT && state() == Stopped) set_state(Runnable); auto handler_laddr = action.handler_or_sigaction; if (handler_laddr.is_null()) { switch (default_signal_action(signal)) { case DefaultSignalAction::Stop: set_state(Stopped); return ShouldUnblockThread::No; case DefaultSignalAction::DumpCore: case DefaultSignalAction::Terminate: m_process.terminate_due_to_signal(signal); return ShouldUnblockThread::No; case DefaultSignalAction::Ignore: return ShouldUnblockThread::No; case DefaultSignalAction::Continue: return ShouldUnblockThread::Yes; } ASSERT_NOT_REACHED(); } if (handler_laddr.as_ptr() == SIG_IGN) { #ifdef SIGNAL_DEBUG kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal); #endif return ShouldUnblockThread::Yes; } dword old_signal_mask = m_signal_mask; dword new_signal_mask = action.mask; if (action.flags & SA_NODEFER) new_signal_mask &= ~(1 << signal); else new_signal_mask |= 1 << signal; m_signal_mask |= new_signal_mask; Scheduler::prepare_to_modify_tss(*this); word ret_cs = m_tss.cs; dword ret_eip = m_tss.eip; dword ret_eflags = m_tss.eflags; bool interrupting_in_kernel = (ret_cs & 3) == 0; ProcessPagingScope paging_scope(m_process); m_process.create_signal_trampolines_if_needed(); if (interrupting_in_kernel) { #ifdef SIGNAL_DEBUG kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip); #endif ASSERT(is_blocked()); m_tss_to_resume_kernel = make(m_tss); #ifdef SIGNAL_DEBUG kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3); #endif if (!m_signal_stack_user_region) { m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)"); ASSERT(m_signal_stack_user_region); } if (!m_kernel_stack_for_signal_handler) { m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size); ASSERT(m_kernel_stack_for_signal_handler); } m_tss.ss = 0x23; m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get(); m_tss.ss0 = 0x10; m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size; push_value_on_stack(0); } else { push_value_on_stack(ret_eip); push_value_on_stack(ret_eflags); // PUSHA dword old_esp = m_tss.esp; push_value_on_stack(m_tss.eax); push_value_on_stack(m_tss.ecx); push_value_on_stack(m_tss.edx); push_value_on_stack(m_tss.ebx); push_value_on_stack(old_esp); push_value_on_stack(m_tss.ebp); push_value_on_stack(m_tss.esi); push_value_on_stack(m_tss.edi); // Align the stack. m_tss.esp -= 12; } // PUSH old_signal_mask push_value_on_stack(old_signal_mask); m_tss.cs = 0x1b; m_tss.ds = 0x23; m_tss.es = 0x23; m_tss.fs = 0x23; m_tss.gs = 0x23; m_tss.eip = handler_laddr.get(); // FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler? push_value_on_stack(signal); if (interrupting_in_kernel) push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get()); else push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get()); ASSERT((m_tss.esp % 16) == 0); // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal. set_state(Skip1SchedulerPass); #ifdef SIGNAL_DEBUG kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip); #endif return ShouldUnblockThread::Yes; } void Thread::set_default_signal_dispositions() { // FIXME: Set up all the right default actions. See signal(7). memset(&m_signal_action_data, 0, sizeof(m_signal_action_data)); m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN); m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN); } void Thread::push_value_on_stack(dword value) { m_tss.esp -= 4; dword* stack_ptr = (dword*)m_tss.esp; *stack_ptr = value; } void Thread::make_userspace_stack_for_main_thread(Vector arguments, Vector environment) { auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack"); ASSERT(region); m_tss.esp = region->laddr().offset(default_userspace_stack_size).get(); char* stack_base = (char*)region->laddr().get(); int argc = arguments.size(); char** argv = (char**)stack_base; char** env = argv + arguments.size() + 1; char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1)); size_t total_blob_size = 0; for (auto& a : arguments) total_blob_size += a.length() + 1; for (auto& e : environment) total_blob_size += e.length() + 1; size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1); // FIXME: It would be better if this didn't make us panic. ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size); for (int i = 0; i < arguments.size(); ++i) { argv[i] = bufptr; memcpy(bufptr, arguments[i].characters(), arguments[i].length()); bufptr += arguments[i].length(); *(bufptr++) = '\0'; } argv[arguments.size()] = nullptr; for (int i = 0; i < environment.size(); ++i) { env[i] = bufptr; memcpy(bufptr, environment[i].characters(), environment[i].length()); bufptr += environment[i].length(); *(bufptr++) = '\0'; } env[environment.size()] = nullptr; // NOTE: The stack needs to be 16-byte aligned. push_value_on_stack((dword)env); push_value_on_stack((dword)argv); push_value_on_stack((dword)argc); push_value_on_stack(0); } void Thread::make_userspace_stack_for_secondary_thread(void *argument) { auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Thread %u Stack", tid())); ASSERT(region); m_tss.esp = region->laddr().offset(default_userspace_stack_size).get(); // NOTE: The stack needs to be 16-byte aligned. push_value_on_stack((dword)argument); push_value_on_stack(0); } Thread* Thread::clone(Process& process) { auto* clone = new Thread(process); memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data)); clone->m_signal_mask = m_signal_mask; clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16); memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState)); clone->m_has_used_fpu = m_has_used_fpu; return clone; } KResult Thread::wait_for_connect(Socket& socket) { if (socket.is_connected()) return KSuccess; m_blocked_socket = socket; block(Thread::State::BlockedConnect); Scheduler::yield(); m_blocked_socket = nullptr; if (!socket.is_connected()) return KResult(-ECONNREFUSED); return KSuccess; } void Thread::initialize() { g_threads = new InlineLinkedList; Scheduler::initialize(); } Vector Thread::all_threads() { Vector threads; InterruptDisabler disabler; for (auto* thread = g_threads->head(); thread; thread = thread->next()) threads.append(thread); return threads; } bool Thread::is_thread(void* ptr) { ASSERT_INTERRUPTS_DISABLED(); for (auto* thread = g_threads->head(); thread; thread = thread->next()) { if (thread == ptr) return true; } return false; }