/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define SIGNAL_DEBUG //#define THREAD_DEBUG namespace Kernel { Thread::Thread(NonnullRefPtr process) : m_process(move(process)) , m_name(m_process->name()) { if (m_process->m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel) == 0) { // First thread gets TID == PID m_tid = m_process->pid().value(); } else { m_tid = Process::allocate_pid().value(); } #ifdef THREAD_DEBUG dbg() << "Created new thread " << m_process->name() << "(" << m_process->pid().value() << ":" << m_tid.value() << ")"; #endif set_default_signal_dispositions(); m_fpu_state = (FPUState*)kmalloc_aligned<16>(sizeof(FPUState)); reset_fpu_state(); memset(&m_tss, 0, sizeof(m_tss)); m_tss.iomapbase = sizeof(TSS32); // Only IF is set when a process boots. m_tss.eflags = 0x0202; if (m_process->is_kernel_process()) { m_tss.cs = GDT_SELECTOR_CODE0; m_tss.ds = GDT_SELECTOR_DATA0; m_tss.es = GDT_SELECTOR_DATA0; m_tss.fs = GDT_SELECTOR_PROC; m_tss.ss = GDT_SELECTOR_DATA0; m_tss.gs = 0; } else { m_tss.cs = GDT_SELECTOR_CODE3 | 3; m_tss.ds = GDT_SELECTOR_DATA3 | 3; m_tss.es = GDT_SELECTOR_DATA3 | 3; m_tss.fs = GDT_SELECTOR_DATA3 | 3; m_tss.ss = GDT_SELECTOR_DATA3 | 3; m_tss.gs = GDT_SELECTOR_TLS | 3; } m_tss.cr3 = m_process->page_directory().cr3(); m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid.value()), Region::Access::Read | Region::Access::Write, false, true); m_kernel_stack_region->set_stack(true); m_kernel_stack_base = m_kernel_stack_region->vaddr().get(); m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u; if (m_process->is_kernel_process()) { m_tss.esp = m_tss.esp0 = m_kernel_stack_top; } else { // Ring 3 processes get a separate stack for ring 0. // The ring 3 stack will be assigned by exec(). m_tss.ss0 = GDT_SELECTOR_DATA0; m_tss.esp0 = m_kernel_stack_top; } // We need to add another reference if we could successfully create // all the resources needed for this thread. The reason for this is that // we don't want to delete this thread after dropping the reference, // it may still be running or scheduled to be run. // The finalizer is responsible for dropping this reference once this // thread is ready to be cleaned up. ref(); if (m_process->pid() != 0) Scheduler::init_thread(*this); } Thread::~Thread() { { // We need to explicitly remove ourselves from the thread list // here. We may get pre-empted in the middle of destructing this // thread, which causes problems if the thread list is iterated. // Specifically, if this is the last thread of a process, checking // block conditions would access m_process, which would be in // the middle of being destroyed. ScopedSpinLock lock(g_scheduler_lock); g_scheduler_data->thread_list_for_state(m_state).remove(*this); } ASSERT(!m_joiner); } void Thread::unblock() { ASSERT(g_scheduler_lock.own_lock()); ASSERT(m_lock.own_lock()); m_blocker = nullptr; if (Thread::current() == this) { set_state(Thread::Running); return; } ASSERT(m_state != Thread::Runnable && m_state != Thread::Running); set_state(Thread::Runnable); } void Thread::set_should_die() { if (m_should_die) { #ifdef THREAD_DEBUG dbg() << *this << " Should already die"; #endif return; } ScopedCritical critical; // Remember that we should die instead of returning to // the userspace. { ScopedSpinLock lock(g_scheduler_lock); m_should_die = true; // NOTE: Even the current thread can technically be in "Stopped" // state! This is the case when another thread sent a SIGSTOP to // it while it was running and it calls e.g. exit() before // the scheduler gets involved again. if (is_stopped()) { // If we were stopped, we need to briefly resume so that // the kernel stacks can clean up. We won't ever return back // to user mode, though resume_from_stopped(); } else if (state() == Queued) { // m_queue can only be accessed safely if g_scheduler_lock is held! if (m_queue) { m_queue->dequeue(*this); m_queue = nullptr; // Wake the thread wake_from_queue(); } } } if (is_blocked()) { ScopedSpinLock lock(m_lock); ASSERT(m_blocker != nullptr); // We're blocked in the kernel. m_blocker->set_interrupted_by_death(); unblock(); } } void Thread::die_if_needed() { ASSERT(Thread::current() == this); if (!m_should_die) return; unlock_process_if_locked(); ScopedCritical critical; set_should_die(); // Flag a context switch. Because we're in a critical section, // Scheduler::yield will actually only mark a pending scontext switch // Simply leaving the critical section would not necessarily trigger // a switch. Scheduler::yield(); // Now leave the critical section so that we can also trigger the // actual context switch u32 prev_flags; Processor::current().clear_critical(prev_flags, false); dbg() << "die_if_needed returned form clear_critical!!! in irq: " << Processor::current().in_irq(); // We should never get here, but the scoped scheduler lock // will be released by Scheduler::context_switch again ASSERT_NOT_REACHED(); } void Thread::yield_without_holding_big_lock() { bool did_unlock = unlock_process_if_locked(); // NOTE: Even though we call Scheduler::yield here, unless we happen // to be outside of a critical section, the yield will be postponed // until leaving it in relock_process. Scheduler::yield(); relock_process(did_unlock); } bool Thread::unlock_process_if_locked() { return process().big_lock().force_unlock_if_locked(); } void Thread::relock_process(bool did_unlock) { // Clearing the critical section may trigger the context switch // flagged by calling Scheduler::donate_to or Scheduler::yield // above. We have to do it this way because we intentionally // leave the critical section here to be able to switch contexts. u32 prev_flags; u32 prev_crit = Processor::current().clear_critical(prev_flags, true); if (did_unlock) { // We've unblocked, relock the process if needed and carry on. process().big_lock().lock(); } // NOTE: We may be on a different CPU now! Processor::current().restore_critical(prev_crit, prev_flags); } u64 Thread::sleep(u64 ticks) { ASSERT(state() == Thread::Running); u64 wakeup_time = g_uptime + ticks; auto ret = Thread::current()->block(nullptr, wakeup_time); if (wakeup_time > g_uptime) { ASSERT(ret.was_interrupted()); } return wakeup_time; } const char* Thread::state_string() const { switch (state()) { case Thread::Invalid: return "Invalid"; case Thread::Runnable: return "Runnable"; case Thread::Running: return "Running"; case Thread::Dying: return "Dying"; case Thread::Dead: return "Dead"; case Thread::Stopped: return "Stopped"; case Thread::Queued: return "Queued"; case Thread::Blocked: { ScopedSpinLock lock(m_lock); ASSERT(m_blocker != nullptr); return m_blocker->state_string(); } } klog() << "Thread::state_string(): Invalid state: " << state(); ASSERT_NOT_REACHED(); return nullptr; } void Thread::finalize() { ASSERT(Thread::current() == g_finalizer); ASSERT(Thread::current() != this); ASSERT(!m_lock.own_lock()); { ScopedSpinLock lock(g_scheduler_lock); #ifdef THREAD_DEBUG dbg() << "Finalizing thread " << *this; #endif set_state(Thread::State::Dead); if (auto* joiner = m_joiner.exchange(nullptr, AK::memory_order_acq_rel)) { // Notify joiner that we exited static_cast(joiner->m_blocker)->joinee_exited(m_exit_value); } } if (m_dump_backtrace_on_finalization) dbg() << backtrace_impl(); kfree_aligned(m_fpu_state); auto thread_cnt_before = m_process->m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel); ASSERT(thread_cnt_before != 0); if (thread_cnt_before == 1) process().finalize(); } void Thread::finalize_dying_threads() { ASSERT(Thread::current() == g_finalizer); Vector dying_threads; { ScopedSpinLock lock(g_scheduler_lock); for_each_in_state(Thread::State::Dying, [&](Thread& thread) { if (thread.is_finalizable()) dying_threads.append(&thread); return IterationDecision::Continue; }); } for (auto* thread : dying_threads) { thread->finalize(); // This thread will never execute again, drop the running reference // NOTE: This may not necessarily drop the last reference if anything // else is still holding onto this thread! thread->unref(); } } bool Thread::tick() { ++m_ticks; if (tss().cs & 3) ++m_process->m_ticks_in_user; else ++m_process->m_ticks_in_kernel; return --m_ticks_left; } bool Thread::has_pending_signal(u8 signal) const { ScopedSpinLock lock(g_scheduler_lock); return m_pending_signals & (1 << (signal - 1)); } u32 Thread::pending_signals() const { ScopedSpinLock lock(g_scheduler_lock); return m_pending_signals; } void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender) { ASSERT(signal < 32); ScopedSpinLock lock(g_scheduler_lock); // FIXME: Figure out what to do for masked signals. Should we also ignore them here? if (should_ignore_signal(signal)) { #ifdef SIGNAL_DEBUG dbg() << "Signal " << signal << " was ignored by " << process(); #endif return; } #ifdef SIGNAL_DEBUG if (sender) dbg() << "Signal: " << *sender << " sent " << signal << " to " << process(); else dbg() << "Signal: Kernel sent " << signal << " to " << process(); #endif m_pending_signals |= 1 << (signal - 1); m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); } u32 Thread::update_signal_mask(u32 signal_mask) { ScopedSpinLock lock(g_scheduler_lock); auto previous_signal_mask = m_signal_mask; m_signal_mask = signal_mask; m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); return previous_signal_mask; } u32 Thread::signal_mask() const { ScopedSpinLock lock(g_scheduler_lock); return m_signal_mask; } u32 Thread::signal_mask_block(sigset_t signal_set, bool block) { ScopedSpinLock lock(g_scheduler_lock); auto previous_signal_mask = m_signal_mask; if (block) m_signal_mask &= ~signal_set; else m_signal_mask |= signal_set; m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); return previous_signal_mask; } void Thread::clear_signals() { ScopedSpinLock lock(g_scheduler_lock); m_signal_mask = 0; m_pending_signals = 0; m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release); } // Certain exceptions, such as SIGSEGV and SIGILL, put a // thread into a state where the signal handler must be // invoked immediately, otherwise it will continue to fault. // This function should be used in an exception handler to // ensure that when the thread resumes, it's executing in // the appropriate signal handler. void Thread::send_urgent_signal_to_self(u8 signal) { ASSERT(Thread::current() == this); ScopedSpinLock lock(g_scheduler_lock); if (dispatch_signal(signal) == ShouldUnblockThread::No) Scheduler::yield(); } ShouldUnblockThread Thread::dispatch_one_pending_signal() { ASSERT(m_lock.own_lock()); u32 signal_candidates = m_pending_signals & ~m_signal_mask; ASSERT(signal_candidates); u8 signal = 1; for (; signal < 32; ++signal) { if (signal_candidates & (1 << (signal - 1))) { break; } } return dispatch_signal(signal); } enum class DefaultSignalAction { Terminate, Ignore, DumpCore, Stop, Continue, }; static DefaultSignalAction default_signal_action(u8 signal) { ASSERT(signal && signal < NSIG); switch (signal) { case SIGHUP: case SIGINT: case SIGKILL: case SIGPIPE: case SIGALRM: case SIGUSR1: case SIGUSR2: case SIGVTALRM: case SIGSTKFLT: case SIGIO: case SIGPROF: case SIGTERM: return DefaultSignalAction::Terminate; case SIGCHLD: case SIGURG: case SIGWINCH: case SIGINFO: return DefaultSignalAction::Ignore; case SIGQUIT: case SIGILL: case SIGTRAP: case SIGABRT: case SIGBUS: case SIGFPE: case SIGSEGV: case SIGXCPU: case SIGXFSZ: case SIGSYS: return DefaultSignalAction::DumpCore; case SIGCONT: return DefaultSignalAction::Continue; case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: return DefaultSignalAction::Stop; } ASSERT_NOT_REACHED(); } bool Thread::should_ignore_signal(u8 signal) const { ASSERT(signal < 32); auto& action = m_signal_action_data[signal]; if (action.handler_or_sigaction.is_null()) return default_signal_action(signal) == DefaultSignalAction::Ignore; if (action.handler_or_sigaction.as_ptr() == SIG_IGN) return true; return false; } bool Thread::has_signal_handler(u8 signal) const { ASSERT(signal < 32); auto& action = m_signal_action_data[signal]; return !action.handler_or_sigaction.is_null(); } static bool push_value_on_user_stack(u32* stack, u32 data) { *stack -= 4; return copy_to_user((u32*)*stack, &data); } void Thread::resume_from_stopped() { ASSERT(is_stopped()); ASSERT(m_stop_state != State::Invalid); ASSERT(g_scheduler_lock.own_lock()); set_state(m_stop_state); m_stop_state = State::Invalid; // make sure SemiPermanentBlocker is unblocked if (m_state != Thread::Runnable && m_state != Thread::Running) { ScopedSpinLock lock(m_lock); if (m_blocker && m_blocker->is_reason_signal()) unblock(); } } ShouldUnblockThread Thread::dispatch_signal(u8 signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(g_scheduler_lock.own_lock()); ASSERT(signal > 0 && signal <= 32); ASSERT(process().is_user_process()); #ifdef SIGNAL_DEBUG klog() << "signal: dispatch signal " << signal << " to " << *this; #endif if (m_state == Invalid || !is_initialized()) { // Thread has barely been created, we need to wait until it is // at least in Runnable state and is_initialized() returns true, // which indicates that it is fully set up an we actually have // a register state on the stack that we can modify return ShouldUnblockThread::No; } auto& action = m_signal_action_data[signal]; // FIXME: Implement SA_SIGINFO signal handlers. ASSERT(!(action.flags & SA_SIGINFO)); // Mark this signal as handled. m_pending_signals &= ~(1 << (signal - 1)); m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); if (signal == SIGSTOP) { if (!is_stopped()) { m_stop_signal = SIGSTOP; set_state(State::Stopped); } return ShouldUnblockThread::No; } if (signal == SIGCONT && is_stopped()) { resume_from_stopped(); } else { auto* thread_tracer = tracer(); if (thread_tracer != nullptr) { // when a thread is traced, it should be stopped whenever it receives a signal // the tracer is notified of this by using waitpid() // only "pending signals" from the tracer are sent to the tracee if (!thread_tracer->has_pending_signal(signal)) { m_stop_signal = signal; // make sure SemiPermanentBlocker is unblocked ScopedSpinLock lock(m_lock); if (m_blocker && m_blocker->is_reason_signal()) unblock(); set_state(Stopped); return ShouldUnblockThread::No; } thread_tracer->unset_signal(signal); } } auto handler_vaddr = action.handler_or_sigaction; if (handler_vaddr.is_null()) { switch (default_signal_action(signal)) { case DefaultSignalAction::Stop: m_stop_signal = signal; set_state(Stopped); return ShouldUnblockThread::No; case DefaultSignalAction::DumpCore: process().for_each_thread([](auto& thread) { thread.set_dump_backtrace_on_finalization(); return IterationDecision::Continue; }); [[fallthrough]]; case DefaultSignalAction::Terminate: m_process->terminate_due_to_signal(signal); return ShouldUnblockThread::No; case DefaultSignalAction::Ignore: ASSERT_NOT_REACHED(); case DefaultSignalAction::Continue: return ShouldUnblockThread::Yes; } ASSERT_NOT_REACHED(); } if (handler_vaddr.as_ptr() == SIG_IGN) { #ifdef SIGNAL_DEBUG klog() << "signal: " << *this << " ignored signal " << signal; #endif return ShouldUnblockThread::Yes; } ProcessPagingScope paging_scope(m_process); u32 old_signal_mask = m_signal_mask; u32 new_signal_mask = action.mask; if (action.flags & SA_NODEFER) new_signal_mask &= ~(1 << (signal - 1)); else new_signal_mask |= 1 << (signal - 1); m_signal_mask |= new_signal_mask; m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release); auto setup_stack = [&](RegisterState& state) { u32* stack = &state.userspace_esp; u32 old_esp = *stack; u32 ret_eip = state.eip; u32 ret_eflags = state.eflags; #ifdef SIGNAL_DEBUG klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp); #endif // Align the stack to 16 bytes. // Note that we push 56 bytes (4 * 14) on to the stack, // so we need to account for this here. u32 stack_alignment = (*stack - 56) % 16; *stack -= stack_alignment; push_value_on_user_stack(stack, ret_eflags); push_value_on_user_stack(stack, ret_eip); push_value_on_user_stack(stack, state.eax); push_value_on_user_stack(stack, state.ecx); push_value_on_user_stack(stack, state.edx); push_value_on_user_stack(stack, state.ebx); push_value_on_user_stack(stack, old_esp); push_value_on_user_stack(stack, state.ebp); push_value_on_user_stack(stack, state.esi); push_value_on_user_stack(stack, state.edi); // PUSH old_signal_mask push_value_on_user_stack(stack, old_signal_mask); push_value_on_user_stack(stack, signal); push_value_on_user_stack(stack, handler_vaddr.get()); push_value_on_user_stack(stack, 0); //push fake return address ASSERT((*stack % 16) == 0); }; // We now place the thread state on the userspace stack. // Note that we use a RegisterState. // Conversely, when the thread isn't blocking the RegisterState may not be // valid (fork, exec etc) but the tss will, so we use that instead. auto& regs = get_register_dump_from_stack(); setup_stack(regs); regs.eip = g_return_to_ring3_from_signal_trampoline.get(); #ifdef SIGNAL_DEBUG klog() << "signal: Okay, " << *this << " {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip) << " to deliver " << signal; #endif return ShouldUnblockThread::Yes; } void Thread::set_default_signal_dispositions() { // FIXME: Set up all the right default actions. See signal(7). memset(&m_signal_action_data, 0, sizeof(m_signal_action_data)); m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN); m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN); } bool Thread::push_value_on_stack(FlatPtr value) { m_tss.esp -= 4; FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp; return copy_to_user(stack_ptr, &value); } RegisterState& Thread::get_register_dump_from_stack() { return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState)); } KResultOr Thread::make_userspace_stack_for_main_thread(Vector arguments, Vector environment, Vector auxiliary_values) { auto* region = m_process->allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false); if (!region) return KResult(-ENOMEM); region->set_stack(true); FlatPtr new_esp = region->vaddr().offset(default_userspace_stack_size).get(); auto push_on_new_stack = [&new_esp](u32 value) { new_esp -= 4; Userspace stack_ptr = new_esp; return copy_to_user(stack_ptr, &value); }; auto push_aux_value_on_new_stack = [&new_esp](auxv_t value) { new_esp -= sizeof(auxv_t); Userspace stack_ptr = new_esp; return copy_to_user(stack_ptr, &value); }; auto push_string_on_new_stack = [&new_esp](const String& string) { new_esp -= round_up_to_power_of_two(string.length() + 1, 4); Userspace stack_ptr = new_esp; return copy_to_user(stack_ptr, string.characters(), string.length() + 1); }; Vector argv_entries; for (auto& argument : arguments) { push_string_on_new_stack(argument); argv_entries.append(new_esp); } Vector env_entries; for (auto& variable : environment) { push_string_on_new_stack(variable); env_entries.append(new_esp); } for (auto& value : auxiliary_values) { if (!value.optional_string.is_empty()) { push_string_on_new_stack(value.optional_string); value.auxv.a_un.a_ptr = (void*)new_esp; } } for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) { auto& value = auxiliary_values[i]; push_aux_value_on_new_stack(value.auxv); } push_on_new_stack(0); for (ssize_t i = env_entries.size() - 1; i >= 0; --i) push_on_new_stack(env_entries[i]); FlatPtr envp = new_esp; push_on_new_stack(0); for (ssize_t i = argv_entries.size() - 1; i >= 0; --i) push_on_new_stack(argv_entries[i]); FlatPtr argv = new_esp; // NOTE: The stack needs to be 16-byte aligned. new_esp -= new_esp % 16; push_on_new_stack((FlatPtr)envp); push_on_new_stack((FlatPtr)argv); push_on_new_stack((FlatPtr)argv_entries.size()); push_on_new_stack(0); return new_esp; } RefPtr Thread::clone(Process& process) { auto clone = adopt(*new Thread(process)); memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data)); clone->m_signal_mask = m_signal_mask; memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState)); clone->m_thread_specific_data = m_thread_specific_data; clone->m_thread_specific_region_size = m_thread_specific_region_size; return clone; } void Thread::set_state(State new_state) { ASSERT(g_scheduler_lock.own_lock()); if (new_state == m_state) return; if (new_state == Blocked) { // we should always have a Blocker while blocked ASSERT(m_blocker != nullptr); } auto previous_state = m_state; if (previous_state == Invalid) { // If we were *just* created, we may have already pending signals ScopedSpinLock thread_lock(m_lock); if (has_unmasked_pending_signals()) { dbg() << "Dispatch pending signals to new thread " << *this; dispatch_one_pending_signal(); } } if (new_state == Stopped) { m_stop_state = m_state; } m_state = new_state; #ifdef THREAD_DEBUG dbg() << "Set Thread " << *this << " state to " << state_string(); #endif if (m_process->pid() != 0) { update_state_for_thread(previous_state); ASSERT(g_scheduler_data->has_thread(*this)); } if (m_state == Dying) { ASSERT(previous_state != Queued); if (this != Thread::current() && is_finalizable()) { // Some other thread set this thread to Dying, notify the // finalizer right away as it can be cleaned up now Scheduler::notify_finalizer(); } } } void Thread::update_state_for_thread(Thread::State previous_state) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(g_scheduler_data); ASSERT(g_scheduler_lock.own_lock()); auto& previous_list = g_scheduler_data->thread_list_for_state(previous_state); auto& list = g_scheduler_data->thread_list_for_state(state()); if (&previous_list != &list) { previous_list.remove(*this); } if (list.contains(*this)) return; list.append(*this); } String Thread::backtrace() { return backtrace_impl(); } struct RecognizedSymbol { u32 address; const KernelSymbol* symbol { nullptr }; }; static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle) { if (!symbol.address) return false; bool mask_kernel_addresses = !process.is_superuser(); if (!symbol.symbol) { if (!is_user_address(VirtualAddress(symbol.address))) { builder.append("0xdeadc0de\n"); } else { if (elf_bundle && elf_bundle->elf_loader->has_symbols()) builder.appendf("%p %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters()); else builder.appendf("%p\n", symbol.address); } return true; } unsigned offset = symbol.address - symbol.symbol->address; if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) { builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address); } else { builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset); } return true; } String Thread::backtrace_impl() { Vector recognized_symbols; auto& process = const_cast(this->process()); OwnPtr elf_bundle; if (!Processor::current().in_irq()) { // If we're handling IRQs we can't really safely symbolicate elf_bundle = process.elf_bundle(); } ProcessPagingScope paging_scope(process); // To prevent a context switch involving this thread, which may happen // on another processor, we need to acquire the scheduler lock while // walking the stack { ScopedSpinLock lock(g_scheduler_lock); FlatPtr stack_ptr, eip; if (Processor::get_context_frame_ptr(*this, stack_ptr, eip)) { recognized_symbols.append({ eip, symbolicate_kernel_address(eip) }); while (stack_ptr) { FlatPtr retaddr; if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) { if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1])) break; recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) }); if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr)) break; } else { void* fault_at; if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at)) break; recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) }); if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at)) break; } } } } StringBuilder builder; for (auto& symbol : recognized_symbols) { if (!symbolicate(symbol, process, builder, elf_bundle.ptr())) break; } return builder.to_string(); } Vector Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const { InterruptDisabler disabler; auto& process = const_cast(this->process()); ProcessPagingScope paging_scope(process); Vector backtrace; backtrace.append(eip); FlatPtr stack_ptr_copy; FlatPtr stack_ptr = (FlatPtr)ebp; while (stack_ptr) { void* fault_at; if (!safe_memcpy(&stack_ptr_copy, (void*)stack_ptr, sizeof(FlatPtr), fault_at)) break; FlatPtr retaddr; if (!safe_memcpy(&retaddr, (void*)(stack_ptr + sizeof(FlatPtr)), sizeof(FlatPtr), fault_at)) break; backtrace.append(retaddr); if (backtrace.size() == Profiling::max_stack_frame_count) break; stack_ptr = stack_ptr_copy; } return backtrace; } KResult Thread::make_thread_specific_region(Badge) { size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData)); m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData); auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true); if (!region) return KResult(-ENOMEM); SmapDisabler disabler; auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr(); auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment); m_thread_specific_data = VirtualAddress(thread_specific_data); thread_specific_data->self = thread_specific_data; if (process().m_master_tls_size) memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size); return KSuccess; } const LogStream& operator<<(const LogStream& stream, const Thread& value) { return stream << value.process().name() << "(" << value.pid().value() << ":" << value.tid().value() << ")"; } Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, timeval* timeout, Atomic* lock, RefPtr beneficiary) { auto* current_thread = Thread::current(); TimerId timer_id {}; bool did_unlock; { ScopedCritical critical; // We need to be in a critical section *and* then also acquire the // scheduler lock. The only way acquiring the scheduler lock could // block us is if another core were to be holding it, in which case // we need to wait until the scheduler lock is released again { ScopedSpinLock sched_lock(g_scheduler_lock); // m_queue can only be accessed safely if g_scheduler_lock is held! m_queue = &queue; if (!queue.enqueue(*current_thread)) { // The WaitQueue was already requested to wake someone when // nobody was waiting. So return right away as we shouldn't // be waiting // The API contract guarantees we return with interrupts enabled, // regardless of how we got called critical.set_interrupt_flag_on_destruction(true); return BlockResult::NotBlocked; } did_unlock = unlock_process_if_locked(); if (lock) *lock = false; set_state(State::Queued); m_wait_reason = reason; if (timeout) { timer_id = TimerQueue::the().add_timer(*timeout, [&]() { wake_from_queue(); }); } // Yield and wait for the queue to wake us up again. if (beneficiary) Scheduler::donate_to(beneficiary, reason); else Scheduler::yield(); } // We've unblocked, relock the process if needed and carry on. relock_process(did_unlock); // This looks counter productive, but we may not actually leave // the critical section we just restored. It depends on whether // we were in one while being called. if (current_thread->should_die()) { // We're being unblocked so that we can clean up. We shouldn't // be in Dying state until we're about to return back to user mode ASSERT(current_thread->state() == Thread::Running); #ifdef THREAD_DEBUG dbg() << "Dying thread " << *current_thread << " was unblocked"; #endif } } BlockResult result(BlockResult::WokeNormally); { // To be able to look at m_wait_queue_node we once again need the // scheduler lock, which is held when we insert into the queue ScopedSpinLock sched_lock(g_scheduler_lock); if (m_queue) { ASSERT(m_queue == &queue); // If our thread was still in the queue, we timed out m_queue = nullptr; if (queue.dequeue(*current_thread)) result = BlockResult::InterruptedByTimeout; } else { // Our thread was already removed from the queue. The only // way this can happen if someone else is trying to kill us. // In this case, the queue should not contain us anymore. result = BlockResult::InterruptedByDeath; } // Make sure we cancel the timer if woke normally. if (timeout && !result.was_interrupted()) TimerQueue::the().cancel_timer(timer_id); } // The API contract guarantees we return with interrupts enabled, // regardless of how we got called sti(); return result; } void Thread::wake_from_queue() { ScopedSpinLock lock(g_scheduler_lock); ASSERT(state() == State::Queued); m_wait_reason = nullptr; if (this != Thread::current()) set_state(State::Runnable); else set_state(State::Running); } RefPtr Thread::from_tid(ThreadID tid) { RefPtr found_thread; ScopedSpinLock lock(g_scheduler_lock); Thread::for_each([&](auto& thread) { if (thread.tid() == tid) { found_thread = &thread; return IterationDecision::Break; } return IterationDecision::Continue; }); return found_thread; } void Thread::reset_fpu_state() { memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState)); } void Thread::start_tracing_from(ProcessID tracer) { m_tracer = ThreadTracer::create(tracer); } void Thread::stop_tracing() { m_tracer = nullptr; } void Thread::tracer_trap(const RegisterState& regs) { ASSERT(m_tracer.ptr()); m_tracer->set_regs(regs); send_urgent_signal_to_self(SIGTRAP); } const Thread::Blocker& Thread::blocker() const { ASSERT(m_lock.own_lock()); ASSERT(m_blocker); return *m_blocker; } }