/* * Copyright (c) 2020, Liav A. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #if ARCH(X86_64) # include #endif #include #include #include #include #include #include #include #include #include namespace Kernel::PCI { #define PCI_MMIO_CONFIG_SPACE_SIZE 4096 static Access* s_access; Access& Access::the() { if (s_access == nullptr) { VERIFY_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here! } return *s_access; } bool Access::is_initialized() { return (s_access != nullptr); } bool Access::is_hardware_disabled() { return g_pci_access_io_probe_failed.was_set(); } bool Access::is_disabled() { return g_pci_access_is_disabled_from_commandline.was_set() || g_pci_access_io_probe_failed.was_set(); } UNMAP_AFTER_INIT bool Access::find_and_register_pci_host_bridges_from_acpi_mcfg_table(PhysicalAddress mcfg_table) { u32 length = 0; u8 revision = 0; { auto mapped_mcfg_table_or_error = Memory::map_typed(mcfg_table); if (mapped_mcfg_table_or_error.is_error()) { dbgln("Failed to map MCFG table"); return false; } auto mapped_mcfg_table = mapped_mcfg_table_or_error.release_value(); length = mapped_mcfg_table->length; revision = mapped_mcfg_table->revision; } if (length == sizeof(ACPI::Structures::SDTHeader)) return false; dbgln("PCI: MCFG, length: {}, revision: {}", length, revision); if (Checked::addition_would_overflow(length, PAGE_SIZE)) { dbgln("Overflow when adding extra page to allocation of length {}", length); return false; } length += PAGE_SIZE; auto region_size_or_error = Memory::page_round_up(length); if (region_size_or_error.is_error()) { dbgln("Failed to round up length of {} to pages", length); return false; } auto mcfg_region_or_error = MM.allocate_mmio_kernel_region(mcfg_table.page_base(), region_size_or_error.value(), "PCI Parsing MCFG"sv, Memory::Region::Access::ReadWrite); if (mcfg_region_or_error.is_error()) return false; auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region_or_error.value()->vaddr().offset(mcfg_table.offset_in_page()).as_ptr(); dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), mcfg_table); for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) { u8 start_bus = mcfg.descriptors[index].start_pci_bus; u8 end_bus = mcfg.descriptors[index].end_pci_bus; u64 start_addr = mcfg.descriptors[index].base_addr; Domain pci_domain { index, start_bus, end_bus }; dmesgln("PCI: New PCI domain @ {}, PCI buses ({}-{})", PhysicalAddress { start_addr }, start_bus, end_bus); auto host_bridge = MemoryBackedHostBridge::must_create(pci_domain, PhysicalAddress { start_addr }); add_host_controller(move(host_bridge)); } return true; } UNMAP_AFTER_INIT bool Access::initialize_for_multiple_pci_domains(PhysicalAddress mcfg_table) { VERIFY(!Access::is_initialized()); auto* access = new Access(); if (!access->find_and_register_pci_host_bridges_from_acpi_mcfg_table(mcfg_table)) return false; access->rescan_hardware(); dbgln_if(PCI_DEBUG, "PCI: access for multiple PCI domain initialised."); return true; } #if ARCH(X86_64) UNMAP_AFTER_INIT bool Access::initialize_for_one_pci_domain() { VERIFY(!Access::is_initialized()); auto* access = new Access(); auto host_bridge = PIIX4HostBridge::must_create_with_io_access(); access->add_host_controller(move(host_bridge)); access->rescan_hardware(); dbgln_if(PCI_DEBUG, "PCI: access for one PCI domain initialised."); return true; } #endif ErrorOr Access::add_host_controller_and_scan_for_devices(NonnullOwnPtr controller) { SpinlockLocker locker(m_access_lock); SpinlockLocker scan_locker(m_scan_lock); auto domain_number = controller->domain_number(); VERIFY(!m_host_controllers.contains(domain_number)); // Note: We need to register the new controller as soon as possible, and // definitely before enumerating devices behind that. m_host_controllers.set(domain_number, move(controller)); m_host_controllers.get(domain_number).value()->enumerate_attached_devices([&](EnumerableDeviceIdentifier const& device_identifier) { auto device_identifier_or_error = DeviceIdentifier::from_enumerable_identifier(device_identifier); if (device_identifier_or_error.is_error()) { dmesgln("Failed during PCI Access::rescan_hardware due to {}", device_identifier_or_error.error()); VERIFY_NOT_REACHED(); } m_device_identifiers.append(device_identifier_or_error.release_value()); }); return {}; } UNMAP_AFTER_INIT void Access::add_host_controller(NonnullOwnPtr controller) { auto domain_number = controller->domain_number(); m_host_controllers.set(domain_number, move(controller)); } UNMAP_AFTER_INIT Access::Access() { s_access = this; } UNMAP_AFTER_INIT void Access::configure_pci_space(PCIConfiguration& config) { SpinlockLocker locker(m_access_lock); SpinlockLocker scan_locker(m_scan_lock); for (auto& [_, host_controller] : m_host_controllers) host_controller->configure_attached_devices(config); } UNMAP_AFTER_INIT void Access::rescan_hardware() { SpinlockLocker locker(m_access_lock); SpinlockLocker scan_locker(m_scan_lock); VERIFY(m_device_identifiers.is_empty()); for (auto& [_, host_controller] : m_host_controllers) { host_controller->enumerate_attached_devices([this](EnumerableDeviceIdentifier const& device_identifier) { auto device_identifier_or_error = DeviceIdentifier::from_enumerable_identifier(device_identifier); if (device_identifier_or_error.is_error()) { dmesgln("Failed during PCI Access::rescan_hardware due to {}", device_identifier_or_error.error()); VERIFY_NOT_REACHED(); } m_device_identifiers.append(device_identifier_or_error.release_value()); }); } } ErrorOr Access::fast_enumerate(Function& callback) const { // Note: We hold the m_access_lock for a brief moment just to ensure we get // a complete Vector in case someone wants to mutate it. Vector> device_identifiers; { SpinlockLocker locker(m_access_lock); VERIFY(!m_device_identifiers.is_empty()); TRY(device_identifiers.try_extend(m_device_identifiers)); } for (auto const& device_identifier : device_identifiers) { callback(device_identifier); } return {}; } DeviceIdentifier const& Access::get_device_identifier(Address address) const { for (auto& device_identifier : m_device_identifiers) { auto device_address = device_identifier->address(); if (device_address.domain() == address.domain() && device_address.bus() == address.bus() && device_address.device() == address.device() && device_address.function() == address.function()) { return device_identifier; } } VERIFY_NOT_REACHED(); } void Access::write8_field(DeviceIdentifier const& identifier, u32 field, u8 value) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); controller.write8_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value); } void Access::write16_field(DeviceIdentifier const& identifier, u32 field, u16 value) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); controller.write16_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value); } void Access::write32_field(DeviceIdentifier const& identifier, u32 field, u32 value) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); controller.write32_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field, value); } u8 Access::read8_field(DeviceIdentifier const& identifier, RegisterOffset field) { VERIFY(identifier.operation_lock().is_locked()); return read8_field(identifier, to_underlying(field)); } u16 Access::read16_field(DeviceIdentifier const& identifier, RegisterOffset field) { VERIFY(identifier.operation_lock().is_locked()); return read16_field(identifier, to_underlying(field)); } u8 Access::read8_field(DeviceIdentifier const& identifier, u32 field) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); return controller.read8_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field); } u16 Access::read16_field(DeviceIdentifier const& identifier, u32 field) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); return controller.read16_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field); } u32 Access::read32_field(DeviceIdentifier const& identifier, u32 field) { VERIFY(identifier.operation_lock().is_locked()); SpinlockLocker locker(m_access_lock); VERIFY(m_host_controllers.contains(identifier.address().domain())); auto& controller = *m_host_controllers.get(identifier.address().domain()).value(); return controller.read32_field(identifier.address().bus(), identifier.address().device(), identifier.address().function(), field); } }