/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2020, Peter Elliott * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #include #include #include namespace Kernel { template class FortunaPRNG { public: constexpr static size_t pool_count = 32; constexpr static size_t reseed_threshold = 16; using CipherType = CipherT; using BlockType = CipherT::BlockType; using HashType = HashT; using DigestType = HashT::DigestType; FortunaPRNG() : m_counter(ByteBuffer::create_zeroed(BlockType::block_size())) { } void get_random_bytes(u8* buffer, size_t n) { if (m_p0_len >= reseed_threshold) { this->reseed(); } ASSERT(is_seeded()); // FIXME: More than 2^20 bytes cannot be generated without refreshing the key. ASSERT(n < (1 << 20)); typename CipherType::CTRMode cipher(m_key, KeySize); Bytes buffer_span { buffer, n }; auto counter_span = m_counter.span(); cipher.key_stream(buffer_span, counter_span, &counter_span); // Extract a new key from the prng stream. cipher.key_stream(buffer_span, counter_span, &counter_span); } template void add_random_event(const T& event_data, size_t pool) { pool %= pool_count; if (pool == 0) { m_p0_len++; } m_pools[pool].update(reinterpret_cast(&event_data), sizeof(T)); } bool is_seeded() const { return m_reseed_number > 0; } bool is_ready() const { return is_seeded() || m_p0_len >= reseed_threshold; } private: void reseed() { HashType new_key; new_key.update(m_key); for (size_t i = 0; i < pool_count; ++i) { if (m_reseed_number % (1 << i) == 0) { DigestType digest = m_pools[i].digest(); new_key.update(digest.immutable_data(), digest.data_length()); } } DigestType digest = new_key.digest(); m_key = ByteBuffer::copy(digest.immutable_data(), digest.data_length()); m_reseed_number++; m_p0_len = 0; } ByteBuffer m_counter; size_t m_reseed_number { 0 }; size_t m_p0_len { 0 }; ByteBuffer m_key; HashType m_pools[pool_count]; }; class KernelRng : public Lockable> { AK_MAKE_ETERNAL; public: static KernelRng& the(); void wait_for_entropy(); void wake_if_ready(); private: KernelRng(); WaitQueue m_seed_queue; }; class EntropySource { template struct Event { u64 timestamp; size_t source; T event_data; }; public: EntropySource() : m_source(next_source++) { } template void add_random_event(const T& event_data) { // We don't lock this because on the off chance a pool is corrupted, entropy isn't lost. Event event = { read_tsc(), m_source, event_data }; KernelRng::the().resource().add_random_event(event, m_pool); m_pool++; KernelRng::the().wake_if_ready(); } private: static size_t next_source; size_t m_pool { 0 }; size_t m_source; Lock m_lock; }; // NOTE: These API's are primarily about expressing intent/needs in the calling code. // The only difference is that get_fast_random is guaranteed not to block. void get_fast_random_bytes(u8*, size_t); void get_good_random_bytes(u8*, size_t); template inline T get_fast_random() { T value; get_fast_random_bytes(reinterpret_cast(&value), sizeof(T)); return value; } template inline T get_good_random() { T value; get_good_random_bytes(reinterpret_cast(&value), sizeof(T)); return value; } }