/* * Copyright (c) 2020, Liav A. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace Kernel { #define GPT_SIGNATURE2 0x54524150 #define GPT_SIGNATURE 0x20494645 #define BytesPerSector 512 struct [[gnu::packed]] GPTPartitionEntry { u8 partition_guid[16]; u8 unique_guid[16]; u64 first_lba; u64 last_lba; u64 attributes; char partition_name[72]; }; struct [[gnu::packed]] GUIDPartitionHeader { u32 sig[2]; u32 revision; u32 header_size; u32 crc32_header; u32 reserved; u64 current_lba; u64 backup_lba; u64 first_usable_lba; u64 last_usable_lba; u64 disk_guid1[2]; u64 partition_array_start_lba; u32 entries_count; u32 partition_entry_size; u32 crc32_entries_array; }; Result, PartitionTable::Error> GUIDPartitionTable::try_to_initialize(StorageDevice const& device) { auto table = adopt_nonnull_own_or_enomem(new (nothrow) GUIDPartitionTable(device)).release_value_but_fixme_should_propagate_errors(); if (!table->is_valid()) return { PartitionTable::Error::Invalid }; return table; } GUIDPartitionTable::GUIDPartitionTable(StorageDevice const& device) : MBRPartitionTable(device) { // FIXME: Handle OOM failure here. m_cached_header = ByteBuffer::create_zeroed(m_device->block_size()).release_value_but_fixme_should_propagate_errors(); VERIFY(partitions_count() == 0); if (!initialize()) m_valid = false; } GUIDPartitionHeader const& GUIDPartitionTable::header() const { return *(GUIDPartitionHeader const*)m_cached_header.data(); } bool GUIDPartitionTable::initialize() { VERIFY(m_cached_header.data() != nullptr); auto first_gpt_block = (m_device->block_size() == 512) ? 1 : 0; auto buffer = UserOrKernelBuffer::for_kernel_buffer(m_cached_header.data()); if (!m_device->read_block(first_gpt_block, buffer)) { return false; } dbgln_if(GPT_DEBUG, "GUIDPartitionTable: signature - {:#08x} {:#08x}", header().sig[1], header().sig[0]); if (header().sig[0] != GPT_SIGNATURE && header().sig[1] != GPT_SIGNATURE2) { dbgln("GUIDPartitionTable: bad signature {:#08x} {:#08x}", header().sig[1], header().sig[0]); return false; } auto entries_buffer_result = ByteBuffer::create_zeroed(m_device->block_size()); if (entries_buffer_result.is_error()) { dbgln("GUIPartitionTable: not enough memory for entries buffer"); return false; } auto entries_buffer = entries_buffer_result.release_value(); auto raw_entries_buffer = UserOrKernelBuffer::for_kernel_buffer(entries_buffer.data()); size_t raw_byte_index = header().partition_array_start_lba * m_device->block_size(); for (size_t entry_index = 0; entry_index < header().entries_count; entry_index++) { if (!m_device->read_block((raw_byte_index / m_device->block_size()), raw_entries_buffer)) { return false; } auto* entries = (GPTPartitionEntry const*)entries_buffer.data(); auto& entry = entries[entry_index % (m_device->block_size() / (size_t)header().partition_entry_size)]; Array partition_type {}; partition_type.span().overwrite(0, entry.partition_guid, partition_type.size()); if (is_unused_entry(partition_type)) { raw_byte_index += header().partition_entry_size; continue; } Array unique_guid {}; unique_guid.span().overwrite(0, entry.unique_guid, unique_guid.size()); dbgln("Detected GPT partition (entry={}), offset={}, limit={}", entry_index, entry.first_lba, entry.last_lba); m_partitions.append({ entry.first_lba, entry.last_lba, partition_type, unique_guid, entry.attributes }); raw_byte_index += header().partition_entry_size; } return true; } bool GUIDPartitionTable::is_unused_entry(Array partition_type) const { return all_of(partition_type, [](auto const octet) { return octet == 0; }); } }