/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include // Remove this once SMP is stable and can be enabled by default #define SCHEDULE_ON_ALL_PROCESSORS 0 namespace Kernel { struct SchedulerData { static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::Scheduler; } bool in_scheduler { true }; }; RecursiveSpinlock g_scheduler_lock; static u32 time_slice_for(const Thread& thread) { // One time slice unit == 4ms (assuming 250 ticks/second) if (thread.is_idle_thread()) return 1; return 2; } READONLY_AFTER_INIT Thread* g_finalizer; READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue; Atomic g_finalizer_has_work { false }; READONLY_AFTER_INIT static Process* s_colonel_process; struct ThreadReadyQueue { IntrusiveList, &Thread::m_ready_queue_node> thread_list; }; struct ThreadReadyQueues { u32 mask {}; static constexpr size_t count = sizeof(mask) * 8; Array queues; }; static Singleton> g_ready_queues; static SpinlockProtected g_total_time_scheduled; // The Scheduler::current_time function provides a current time for scheduling purposes, // which may not necessarily relate to wall time u64 (*Scheduler::current_time)(); static void dump_thread_list(bool = false); static inline u32 thread_priority_to_priority_index(u32 thread_priority) { // Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX // to a index into g_ready_queues where 0 is the highest priority bucket VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX); constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1; static_assert(thread_priority_count > 0); auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (ThreadReadyQueues::count - 1); VERIFY(priority_bucket < ThreadReadyQueues::count); return priority_bucket; } Thread& Scheduler::pull_next_runnable_thread() { auto affinity_mask = 1u << Processor::id(); return g_ready_queues->with([&](auto& ready_queues) -> Thread& { auto priority_mask = ready_queues.mask; while (priority_mask != 0) { auto priority = __builtin_ffsl(priority_mask); VERIFY(priority > 0); auto& ready_queue = ready_queues.queues[--priority]; for (auto& thread : ready_queue.thread_list) { VERIFY(thread.m_runnable_priority == (int)priority); if (thread.is_active()) continue; if (!(thread.affinity() & affinity_mask)) continue; thread.m_runnable_priority = -1; ready_queue.thread_list.remove(thread); if (ready_queue.thread_list.is_empty()) ready_queues.mask &= ~(1u << priority); // Mark it as active because we are using this thread. This is similar // to comparing it with Processor::current_thread, but when there are // multiple processors there's no easy way to check whether the thread // is actually still needed. This prevents accidental finalization when // a thread is no longer in Running state, but running on another core. // We need to mark it active here so that this thread won't be // scheduled on another core if it were to be queued before actually // switching to it. // FIXME: Figure out a better way maybe? thread.set_active(true); return thread; } priority_mask &= ~(1u << priority); } return *Processor::idle_thread(); }); } Thread* Scheduler::peek_next_runnable_thread() { auto affinity_mask = 1u << Processor::id(); return g_ready_queues->with([&](auto& ready_queues) -> Thread* { auto priority_mask = ready_queues.mask; while (priority_mask != 0) { auto priority = __builtin_ffsl(priority_mask); VERIFY(priority > 0); auto& ready_queue = ready_queues.queues[--priority]; for (auto& thread : ready_queue.thread_list) { VERIFY(thread.m_runnable_priority == (int)priority); if (thread.is_active()) continue; if (!(thread.affinity() & affinity_mask)) continue; return &thread; } priority_mask &= ~(1u << priority); } // Unlike in pull_next_runnable_thread() we don't want to fall back to // the idle thread. We just want to see if we have any other thread ready // to be scheduled. return nullptr; }); } bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity) { if (thread.is_idle_thread()) return true; return g_ready_queues->with([&](auto& ready_queues) { auto priority = thread.m_runnable_priority; if (priority < 0) { VERIFY(!thread.m_ready_queue_node.is_in_list()); return false; } if (check_affinity && !(thread.affinity() & (1 << Processor::id()))) return false; VERIFY(ready_queues.mask & (1u << priority)); auto& ready_queue = ready_queues.queues[priority]; thread.m_runnable_priority = -1; ready_queue.thread_list.remove(thread); if (ready_queue.thread_list.is_empty()) ready_queues.mask &= ~(1u << priority); return true; }); } void Scheduler::enqueue_runnable_thread(Thread& thread) { VERIFY(g_scheduler_lock.own_lock()); if (thread.is_idle_thread()) return; auto priority = thread_priority_to_priority_index(thread.priority()); g_ready_queues->with([&](auto& ready_queues) { VERIFY(thread.m_runnable_priority < 0); thread.m_runnable_priority = (int)priority; VERIFY(!thread.m_ready_queue_node.is_in_list()); auto& ready_queue = ready_queues.queues[priority]; bool was_empty = ready_queue.thread_list.is_empty(); ready_queue.thread_list.append(thread); if (was_empty) ready_queues.mask |= (1u << priority); }); } UNMAP_AFTER_INIT void Scheduler::start() { VERIFY_INTERRUPTS_DISABLED(); // We need to acquire our scheduler lock, which will be released // by the idle thread once control transferred there g_scheduler_lock.lock(); auto& processor = Processor::current(); ProcessorSpecific::initialize(); VERIFY(processor.is_initialized()); auto& idle_thread = *Processor::idle_thread(); VERIFY(processor.current_thread() == &idle_thread); idle_thread.set_ticks_left(time_slice_for(idle_thread)); idle_thread.did_schedule(); idle_thread.set_initialized(true); processor.init_context(idle_thread, false); idle_thread.set_state(Thread::Running); VERIFY(idle_thread.affinity() == (1u << processor.get_id())); processor.initialize_context_switching(idle_thread); VERIFY_NOT_REACHED(); } bool Scheduler::pick_next() { VERIFY_INTERRUPTS_DISABLED(); // Set the in_scheduler flag before acquiring the spinlock. This // prevents a recursive call into Scheduler::invoke_async upon // leaving the scheduler lock. ScopedCritical critical; ProcessorSpecific::get().in_scheduler = true; ScopeGuard guard( []() { // We may be on a different processor after we got switched // back to this thread! auto& scheduler_data = ProcessorSpecific::get(); VERIFY(scheduler_data.in_scheduler); scheduler_data.in_scheduler = false; }); SpinlockLocker lock(g_scheduler_lock); if constexpr (SCHEDULER_RUNNABLE_DEBUG) { dump_thread_list(); } auto& thread_to_schedule = pull_next_runnable_thread(); if constexpr (SCHEDULER_DEBUG) { dbgln("Scheduler[{}]: Switch to {} @ {:#04x}:{:p}", Processor::id(), thread_to_schedule, thread_to_schedule.regs().cs, thread_to_schedule.regs().ip()); } // We need to leave our first critical section before switching context, // but since we're still holding the scheduler lock we're still in a critical section critical.leave(); thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule)); return context_switch(&thread_to_schedule); } bool Scheduler::yield() { InterruptDisabler disabler; auto& proc = Processor::current(); auto current_thread = Thread::current(); dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", proc.get_id(), *current_thread, proc.in_irq()); VERIFY(current_thread != nullptr); if (proc.in_irq() || Processor::in_critical()) { // If we're handling an IRQ we can't switch context, or we're in // a critical section where we don't want to switch contexts, then // delay until exiting the trap or critical section proc.invoke_scheduler_async(); return false; } if (!Scheduler::pick_next()) return false; if constexpr (SCHEDULER_DEBUG) dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::id(), *current_thread, Processor::current().in_irq()); return true; } bool Scheduler::context_switch(Thread* thread) { if (Memory::s_mm_lock.own_lock()) { PANIC("In context switch while holding Memory::s_mm_lock"); } thread->did_schedule(); auto from_thread = Thread::current(); if (from_thread == thread) return false; if (from_thread) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (from_thread->state() == Thread::Running) from_thread->set_state(Thread::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH const auto msg = "Scheduler[{}]: {} -> {} [prio={}] {:#04x}:{:p}"; dbgln(msg, Processor::id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->regs().cs, thread->regs().ip()); #endif } auto& proc = Processor::current(); if (!thread->is_initialized()) { proc.init_context(*thread, false); thread->set_initialized(true); } thread->set_state(Thread::Running); PerformanceManager::add_context_switch_perf_event(*from_thread, *thread); proc.switch_context(from_thread, thread); // NOTE: from_thread at this point reflects the thread we were // switched from, and thread reflects Thread::current() enter_current(*from_thread, false); VERIFY(thread == Thread::current()); if (thread->process().is_user_process() && thread->previous_mode() != Thread::PreviousMode::KernelMode && thread->current_trap()) { auto& regs = thread->get_register_dump_from_stack(); auto iopl = get_iopl_from_eflags(regs.flags()); if (iopl != 0) { PANIC("Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl); } } return true; } void Scheduler::enter_current(Thread& prev_thread, bool is_first) { VERIFY(g_scheduler_lock.own_lock()); // We already recorded the scheduled time when entering the trap, so this merely accounts for the kernel time since then auto scheduler_time = Scheduler::current_time(); prev_thread.update_time_scheduled(scheduler_time, true, true); auto* current_thread = Thread::current(); current_thread->update_time_scheduled(scheduler_time, true, false); prev_thread.set_active(false); if (prev_thread.state() == Thread::Dying) { // If the thread we switched from is marked as dying, then notify // the finalizer. Note that as soon as we leave the scheduler lock // the finalizer may free from_thread! notify_finalizer(); } else if (!is_first) { // Check if we have any signals we should deliver (even if we don't // end up switching to another thread). if (!current_thread->is_in_block() && current_thread->previous_mode() != Thread::PreviousMode::KernelMode && current_thread->current_trap()) { SpinlockLocker lock(current_thread->get_lock()); if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) { current_thread->dispatch_one_pending_signal(); } } } } void Scheduler::leave_on_first_switch(u32 flags) { // This is called when a thread is switched into for the first time. // At this point, enter_current has already be called, but because // Scheduler::context_switch is not in the call stack we need to // clean up and release locks manually here g_scheduler_lock.unlock(flags); auto& scheduler_data = ProcessorSpecific::get(); VERIFY(scheduler_data.in_scheduler); scheduler_data.in_scheduler = false; } void Scheduler::prepare_after_exec() { // This is called after exec() when doing a context "switch" into // the new process. This is called from Processor::assume_context VERIFY(g_scheduler_lock.own_lock()); auto& scheduler_data = ProcessorSpecific::get(); VERIFY(!scheduler_data.in_scheduler); scheduler_data.in_scheduler = true; } void Scheduler::prepare_for_idle_loop() { // This is called when the CPU finished setting up the idle loop // and is about to run it. We need to acquire he scheduler lock VERIFY(!g_scheduler_lock.own_lock()); g_scheduler_lock.lock(); auto& scheduler_data = ProcessorSpecific::get(); VERIFY(!scheduler_data.in_scheduler); scheduler_data.in_scheduler = true; } Process* Scheduler::colonel() { VERIFY(s_colonel_process); return s_colonel_process; } static u64 current_time_tsc() { return read_tsc(); } static u64 current_time_monotonic() { // We always need a precise timestamp here, we cannot rely on a coarse timestamp return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).to_nanoseconds(); } UNMAP_AFTER_INIT void Scheduler::initialize() { VERIFY(Processor::is_initialized()); // sanity check // Figure out a good scheduling time source if (Processor::current().has_feature(CPUFeature::TSC)) { // TODO: only use if TSC is running at a constant frequency? current_time = current_time_tsc; } else { // TODO: Using HPET is rather slow, can we use any other time source that may be faster? current_time = current_time_monotonic; } RefPtr idle_thread; g_finalizer_wait_queue = new WaitQueue; g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release); s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1, Process::RegisterProcess::No).leak_ref(); VERIFY(s_colonel_process); VERIFY(idle_thread); idle_thread->set_priority(THREAD_PRIORITY_MIN); idle_thread->set_name(KString::try_create("idle thread #0")); set_idle_thread(idle_thread); } UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread) { idle_thread->set_idle_thread(); Processor::current().set_idle_thread(*idle_thread); Processor::set_current_thread(*idle_thread); } UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu) { VERIFY(cpu != 0); // This function is called on the bsp, but creates an idle thread for another AP VERIFY(Processor::is_bootstrap_processor()); VERIFY(s_colonel_process); Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, KString::try_create(String::formatted("idle thread #{}", cpu)), 1 << cpu, false); VERIFY(idle_thread); return idle_thread; } void Scheduler::add_time_scheduled(u64 time_to_add, bool is_kernel) { g_total_time_scheduled.with([&](auto& total_time_scheduled) { total_time_scheduled.total += time_to_add; if (is_kernel) total_time_scheduled.total_kernel += time_to_add; }); } void Scheduler::timer_tick(const RegisterState& regs) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(Processor::current().in_irq()); auto current_thread = Processor::current_thread(); if (!current_thread) return; // Sanity checks VERIFY(current_thread->current_trap()); VERIFY(current_thread->current_trap()->regs == ®s); #if !SCHEDULE_ON_ALL_PROCESSORS if (!Processor::is_bootstrap_processor()) return; // TODO: This prevents scheduling on other CPUs! #endif if (current_thread->process().is_kernel_process()) { // Because the previous mode when entering/exiting kernel threads never changes // we never update the time scheduled. So we need to update it manually on the // timer interrupt current_thread->update_time_scheduled(current_time(), true, false); } if (current_thread->previous_mode() == Thread::PreviousMode::UserMode && current_thread->should_die() && !current_thread->is_blocked()) { SpinlockLocker scheduler_lock(g_scheduler_lock); dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Terminating user mode thread {}", Processor::id(), *current_thread); current_thread->set_state(Thread::Dying); Processor::current().invoke_scheduler_async(); return; } if (current_thread->tick()) return; if (!current_thread->is_idle_thread() && !peek_next_runnable_thread()) { // If no other thread is ready to be scheduled we don't need to // switch to the idle thread. Just give the current thread another // time slice and let it run! current_thread->set_ticks_left(time_slice_for(*current_thread)); current_thread->did_schedule(); dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: No other threads ready, give {} another timeslice", Processor::id(), *current_thread); return; } VERIFY_INTERRUPTS_DISABLED(); VERIFY(Processor::current().in_irq()); Processor::current().invoke_scheduler_async(); } void Scheduler::invoke_async() { VERIFY_INTERRUPTS_DISABLED(); auto& processor = Processor::current(); VERIFY(!processor.in_irq()); // Since this function is called when leaving critical sections (such // as a Spinlock), we need to check if we're not already doing this // to prevent recursion if (!ProcessorSpecific::get().in_scheduler) pick_next(); } void Scheduler::notify_finalizer() { if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false) g_finalizer_wait_queue->wake_all(); } void Scheduler::idle_loop(void*) { auto& proc = Processor::current(); dbgln("Scheduler[{}]: idle loop running", proc.get_id()); VERIFY(are_interrupts_enabled()); for (;;) { proc.idle_begin(); asm("hlt"); proc.idle_end(); VERIFY_INTERRUPTS_ENABLED(); #if SCHEDULE_ON_ALL_PROCESSORS yield(); #else if (Processor::id() == 0) yield(); #endif } } void Scheduler::dump_scheduler_state(bool with_stack_traces) { dump_thread_list(with_stack_traces); } bool Scheduler::is_initialized() { // The scheduler is initialized iff the idle thread exists return Processor::idle_thread() != nullptr; } TotalTimeScheduled Scheduler::get_total_time_scheduled() { return g_total_time_scheduled.with([&](auto& total_time_scheduled) { return total_time_scheduled; }); } void dump_thread_list(bool with_stack_traces) { dbgln("Scheduler thread list for processor {}:", Processor::id()); auto get_cs = [](Thread& thread) -> u16 { if (!thread.current_trap()) return thread.regs().cs; return thread.get_register_dump_from_stack().cs; }; auto get_eip = [](Thread& thread) -> u32 { if (!thread.current_trap()) return thread.regs().ip(); return thread.get_register_dump_from_stack().ip(); }; Thread::for_each([&](Thread& thread) { switch (thread.state()) { case Thread::Dying: dmesgln(" {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})", thread.state_string(), thread, get_cs(thread), get_eip(thread), thread.is_finalizable(), thread.times_scheduled()); break; default: dmesgln(" {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})", thread.state_string(), thread.priority(), thread, get_cs(thread), get_eip(thread), thread.times_scheduled()); break; } if (with_stack_traces) dbgln("{}", thread.backtrace()); return IterationDecision::Continue; }); } }