/* * Copyright (c) 2020, Liav A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include namespace Kernel { namespace PCI { class MMIOSegment { public: MMIOSegment(PhysicalAddress, u8, u8); u8 get_start_bus() const; u8 get_end_bus() const; size_t get_size() const; PhysicalAddress get_paddr() const; private: PhysicalAddress m_base_addr; u8 m_start_bus; u8 m_end_bus; }; #define PCI_MMIO_CONFIG_SPACE_SIZE 4096 DeviceConfigurationSpaceMapping::DeviceConfigurationSpaceMapping(Address device_address, const MMIOSegment& mmio_segment) : m_device_address(device_address) , m_mapped_region(MM.allocate_kernel_region(PAGE_ROUND_UP(PCI_MMIO_CONFIG_SPACE_SIZE), "PCI MMIO Device Access", Region::Access::Read | Region::Access::Write).release_nonnull()) { PhysicalAddress segment_lower_addr = mmio_segment.get_paddr(); PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset( PCI_MMIO_CONFIG_SPACE_SIZE * m_device_address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * m_device_address.device() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (m_device_address.bus() - mmio_segment.get_start_bus())); m_mapped_region->physical_page_slot(0) = PhysicalPage::create(device_physical_mmio_space, false, false); m_mapped_region->remap(); } uint32_t MMIOAccess::segment_count() const { return m_segments.size(); } uint8_t MMIOAccess::segment_start_bus(u32 seg) const { auto segment = m_segments.get(seg); ASSERT(segment.has_value()); return segment.value().get_start_bus(); } uint8_t MMIOAccess::segment_end_bus(u32 seg) const { auto segment = m_segments.get(seg); ASSERT(segment.has_value()); return segment.value().get_end_bus(); } void MMIOAccess::initialize(PhysicalAddress mcfg) { if (!Access::is_initialized()) { new MMIOAccess(mcfg); #if PCI_DEBUG dbgln("PCI: MMIO access initialised."); #endif } } MMIOAccess::MMIOAccess(PhysicalAddress p_mcfg) : m_mcfg(p_mcfg) { klog() << "PCI: Using MMIO for PCI configuration space access"; auto checkup_region = MM.allocate_kernel_region(p_mcfg.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write); #if PCI_DEBUG dbgln("PCI: Checking MCFG Table length to choose the correct mapping size"); #endif auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr(); u32 length = sdt->length; u8 revision = sdt->revision; klog() << "PCI: MCFG, length - " << length << ", revision " << revision; checkup_region->unmap(); auto mcfg_region = MM.allocate_kernel_region(p_mcfg.page_base(), PAGE_ROUND_UP(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write); auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr(); dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), PhysicalAddress(p_mcfg.get())); for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) { u8 start_bus = mcfg.descriptors[index].start_pci_bus; u8 end_bus = mcfg.descriptors[index].end_pci_bus; u32 lower_addr = mcfg.descriptors[index].base_addr; m_segments.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus }); klog() << "PCI: New PCI segment @ " << PhysicalAddress(lower_addr) << ", PCI buses (" << start_bus << "-" << end_bus << ")"; } mcfg_region->unmap(); klog() << "PCI: MMIO segments - " << m_segments.size(); InterruptDisabler disabler; enumerate_hardware([&](const Address& address, ID id) { m_mapped_device_regions.append(make(address, m_segments.get(address.seg()).value())); m_physical_ids.append({ address, id, get_capabilities(address) }); dbgln_if(PCI_DEBUG, "PCI: Mapping device @ pci ({}) {} {}", address, m_mapped_device_regions.last().vaddr(), m_mapped_device_regions.last().paddr()); }); } Optional MMIOAccess::get_device_configuration_space(Address address) { dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address); for (auto& mapping : m_mapped_device_regions) { auto checked_address = mapping.address(); dbgln_if(PCI_DEBUG, "PCI Device Configuration Space Mapping: Check if {} was requested", checked_address); if (address.seg() == checked_address.seg() && address.bus() == checked_address.bus() && address.device() == checked_address.device() && address.function() == checked_address.function()) { dbgln_if(PCI_DEBUG, "PCI Device Configuration Space Mapping: Found {}", checked_address); return mapping.vaddr(); } } dbgln_if(PCI_DEBUG, "PCI: No device configuration space found for {}", address); return {}; } u8 MMIOAccess::read8_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field <= 0xfff); dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address); return *((u8*)(get_device_configuration_space(address).value().get() + (field & 0xfff))); } u16 MMIOAccess::read16_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field < 0xfff); dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address); return *((u16*)(get_device_configuration_space(address).value().get() + (field & 0xfff))); } u32 MMIOAccess::read32_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field <= 0xffc); dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address); return *((u32*)(get_device_configuration_space(address).value().get() + (field & 0xfff))); } void MMIOAccess::write8_field(Address address, u32 field, u8 value) { InterruptDisabler disabler; ASSERT(field <= 0xfff); dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address); *((u8*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value; } void MMIOAccess::write16_field(Address address, u32 field, u16 value) { InterruptDisabler disabler; ASSERT(field < 0xfff); dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address); *((u16*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value; } void MMIOAccess::write32_field(Address address, u32 field, u32 value) { InterruptDisabler disabler; ASSERT(field <= 0xffc); dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address); *((u32*)(get_device_configuration_space(address).value().get() + (field & 0xfff))) = value; } void MMIOAccess::enumerate_hardware(Function callback) { for (u16 seg = 0; seg < m_segments.size(); seg++) { dbgln_if(PCI_DEBUG, "PCI: Enumerating Memory mapped IO segment {}", seg); // Single PCI host controller. if ((early_read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) { enumerate_bus(-1, 0, callback, true); return; } // Multiple PCI host controllers. for (u8 function = 0; function < 8; ++function) { if (early_read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE) break; enumerate_bus(-1, function, callback, false); } } } MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus) : m_base_addr(segment_base_addr) , m_start_bus(start_bus) , m_end_bus(end_bus) { } u8 MMIOSegment::get_start_bus() const { return m_start_bus; } u8 MMIOSegment::get_end_bus() const { return m_end_bus; } size_t MMIOSegment::get_size() const { return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus())); } PhysicalAddress MMIOSegment::get_paddr() const { return m_base_addr; } } }