#include "types.h" #include "Process.h" #include "kmalloc.h" #include "StdLib.h" #include "i386.h" #include "system.h" #include #include #include "ELFLoader.h" #include "MemoryManager.h" #include "errno.h" #include "i8253.h" #include "RTC.h" #include "ProcFileSystem.h" #include #include #include "Syscall.h" #include "Scheduler.h" #include "FIFO.h" #include "KSyms.h" #include #include "MasterPTY.h" //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG #define SIGNAL_DEBUG #define MAX_PROCESS_GIDS 32 static const dword defaultStackSize = 16384; static pid_t next_pid; InlineLinkedList* g_processes; static String* s_hostname; static String& hostnameStorage(InterruptDisabler&) { ASSERT(s_hostname); return *s_hostname; } static String getHostname() { InterruptDisabler disabler; return hostnameStorage(disabler).isolated_copy(); } CoolGlobals* g_cool_globals; void Process::initialize() { #ifdef COOL_GLOBALS g_cool_globals = reinterpret_cast(0x1000); #endif next_pid = 0; g_processes = new InlineLinkedList; s_hostname = new String("courage"); Scheduler::initialize(); initialize_gui_statics(); } Vector Process::allProcesses() { InterruptDisabler disabler; Vector processes; processes.ensure_capacity(g_processes->size_slow()); for (auto* process = g_processes->head(); process; process = process->next()) processes.append(process); return processes; } Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit) { size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_nextRegion; m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable))); if (commit) m_regions.last()->commit(*this); MM.map_region(*this, *m_regions.last()); return m_regions.last().ptr(); } Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr&& inode, String&& name, bool is_readable, bool is_writable) { size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_nextRegion; m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable))); MM.map_region(*this, *m_regions.last()); return m_regions.last().ptr(); } Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, RetainPtr&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable) { ASSERT(vmo); size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_nextRegion; m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); offset_in_vmo &= PAGE_MASK; size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE; m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable))); MM.map_region(*this, *m_regions.last()); return m_regions.last().ptr(); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; for (size_t i = 0; i < m_regions.size(); ++i) { if (m_regions[i].ptr() == ®ion) { MM.unmap_region(*this, region); m_regions.remove(i); return true; } } return false; } Region* Process::regionFromRange(LinearAddress laddr, size_t size) { for (auto& region : m_regions) { if (region->linearAddress == laddr && region->size == size) return region.ptr(); } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { if (!validate_read_str(name)) return -EFAULT; auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -EINVAL; region->name = name; return 0; } void* Process::sys$mmap(const Syscall::SC_mmap_params* params) { if (!validate_read(params, sizeof(Syscall::SC_mmap_params))) return (void*)-EFAULT; void* addr = (void*)params->addr; size_t size = params->size; int prot = params->prot; int flags = params->flags; int fd = params->fd; Unix::off_t offset = params->offset; if (size == 0) return (void*)-EINVAL; if ((dword)addr & ~PAGE_MASK || size & ~PAGE_MASK) return (void*)-EINVAL; if (flags & MAP_ANONYMOUS) { InterruptDisabler disabler; // FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae. ASSERT(addr == nullptr); auto* region = allocate_region(LinearAddress(), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false); if (!region) return (void*)-ENOMEM; return region->linearAddress.asPtr(); } if (offset & ~PAGE_MASK) return (void*)-EINVAL; auto* descriptor = file_descriptor(fd); if (!descriptor) return (void*)-EBADF; if (!descriptor->supports_mmap()) return (void*)-ENODEV; // FIXME: If PROT_EXEC, check that the underlying file system isn't mounted noexec. auto region_name = descriptor->absolute_path(); InterruptDisabler disabler; // FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae. ASSERT(addr == nullptr); auto* region = allocate_file_backed_region(LinearAddress(), size, descriptor->inode(), move(region_name), prot & PROT_READ, prot & PROT_WRITE); if (!region) return (void*)-ENOMEM; return region->linearAddress.asPtr(); } int Process::sys$munmap(void* addr, size_t size) { InterruptDisabler disabler; auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -1; if (!deallocate_region(*region)) return -1; return 0; } int Process::sys$gethostname(char* buffer, size_t size) { if (!validate_write(buffer, size)) return -EFAULT; auto hostname = getHostname(); if (size < (hostname.length() + 1)) return -ENAMETOOLONG; memcpy(buffer, hostname.characters(), size); return 0; } Process* Process::fork(RegisterDump& regs) { auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copyRef(), m_executable.copyRef(), m_tty, this); if (!child) return nullptr; memcpy(child->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data)); child->m_signal_mask = m_signal_mask; #ifdef FORK_DEBUG dbgprintf("fork: child=%p\n", child); #endif child->m_initial_arguments = m_initial_arguments; child->m_initial_environment = m_initial_environment; for (auto& region : m_regions) { #ifdef FORK_DEBUG dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name.characters(), region->linearAddress.get()); #endif auto cloned_region = region->clone(); child->m_regions.append(move(cloned_region)); MM.map_region(*child, *child->m_regions.last()); if (region.ptr() == m_display_framebuffer_region.ptr()) child->m_display_framebuffer_region = child->m_regions.last().copyRef(); } for (auto gid : m_gids) child->m_gids.set(gid); child->m_tss.eax = 0; // fork() returns 0 in the child :^) child->m_tss.ebx = regs.ebx; child->m_tss.ecx = regs.ecx; child->m_tss.edx = regs.edx; child->m_tss.ebp = regs.ebp; child->m_tss.esp = regs.esp_if_crossRing; child->m_tss.esi = regs.esi; child->m_tss.edi = regs.edi; child->m_tss.eflags = regs.eflags; child->m_tss.eip = regs.eip; child->m_tss.cs = regs.cs; child->m_tss.ds = regs.ds; child->m_tss.es = regs.es; child->m_tss.fs = regs.fs; child->m_tss.gs = regs.gs; child->m_tss.ss = regs.ss_if_crossRing; #ifdef FORK_DEBUG dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp); #endif ProcFS::the().add_process(*child); { InterruptDisabler disabler; g_processes->prepend(child); system.nprocess++; } #ifdef TASK_DEBUG kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip); #endif return child; } pid_t Process::sys$fork(RegisterDump& regs) { auto* child = fork(regs); ASSERT(child); return child->pid(); } int Process::do_exec(const String& path, Vector&& arguments, Vector&& environment) { auto parts = path.split('/'); if (parts.is_empty()) return -ENOENT; int error; auto descriptor = VFS::the().open(path, error, 0, 0, m_cwd ? m_cwd->identifier() : InodeIdentifier()); if (!descriptor) { ASSERT(error != 0); return error; } if (!descriptor->metadata().mayExecute(m_euid, m_gids)) return -EACCES; if (!descriptor->metadata().size) { kprintf("exec() of 0-length binaries not supported\n"); return -ENOTIMPL; } auto vmo = VMObject::create_file_backed(descriptor->inode(), descriptor->metadata().size); vmo->set_name(descriptor->absolute_path()); auto* region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copyRef(), 0, "helper", true, false); dword entry_eip = 0; // FIXME: Is there a race here? auto old_page_directory = move(m_page_directory); m_page_directory = make(); #ifdef MM_DEBUG dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr()); #endif ProcessPagingScope paging_scope(*this); // FIXME: Should we consider doing on-demand paging here? Is it actually useful? bool success = region->page_in(*m_page_directory); ASSERT(success); { InterruptDisabler disabler; // Okay, here comes the sleight of hand, pay close attention.. auto old_regions = move(m_regions); ELFLoader loader(region->linearAddress.asPtr()); loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div? (void) allocate_region_with_vmo(laddr, size, vmo.copyRef(), offset_in_image, String(name), is_readable, is_writable); return laddr.asPtr(); }; loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div? (void) allocate_region(laddr, size, String(name), is_readable, is_writable); return laddr.asPtr(); }; bool success = loader.load(); if (!success) { m_page_directory = move(old_page_directory); // FIXME: RAII this somehow instead. ASSERT(current == this); MM.enter_process_paging_scope(*this); m_regions = move(old_regions); kprintf("sys$execve: Failure loading %s\n", path.characters()); return -ENOEXEC; } entry_eip = loader.entry().get(); if (!entry_eip) { m_page_directory = move(old_page_directory); // FIXME: RAII this somehow instead. ASSERT(current == this); MM.enter_process_paging_scope(*this); m_regions = move(old_regions); return -ENOEXEC; } } m_signal_stack_kernel_region = nullptr; m_signal_stack_user_region = nullptr; m_display_framebuffer_region = nullptr; memset(m_signal_action_data, 0, sizeof(m_signal_action_data)); m_signal_mask = 0xffffffff; m_pending_signals = 0; for (size_t i = 0; i < m_fds.size(); ++i) { auto& daf = m_fds[i]; if (daf.descriptor && daf.flags & FD_CLOEXEC) { daf.descriptor->close(); daf = { }; } } // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield(). // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec(). cli(); Scheduler::prepare_to_modify_tss(*this); m_name = parts.take_last(); dword old_esp0 = m_tss.esp0; memset(&m_tss, 0, sizeof(m_tss)); m_tss.eflags = 0x0202; m_tss.eip = entry_eip; m_tss.cs = 0x1b; m_tss.ds = 0x23; m_tss.es = 0x23; m_tss.fs = 0x23; m_tss.gs = 0x23; m_tss.ss = 0x23; m_tss.cr3 = page_directory().cr3(); m_stack_region = allocate_region(LinearAddress(), defaultStackSize, "stack"); ASSERT(m_stack_region); m_stackTop3 = m_stack_region->linearAddress.offset(defaultStackSize).get(); m_tss.esp = m_stackTop3; m_tss.ss0 = 0x10; m_tss.esp0 = old_esp0; m_tss.ss2 = m_pid; m_executable = descriptor->inode(); m_initial_arguments = move(arguments); m_initial_environment = move(environment); #ifdef TASK_DEBUG kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip); #endif set_state(Skip1SchedulerPass); return 0; } int Process::exec(const String& path, Vector&& arguments, Vector&& environment) { // The bulk of exec() is done by do_exec(), which ensures that all locals // are cleaned up by the time we yield-teleport below. int rc = do_exec(path, move(arguments), move(environment)); if (rc < 0) return rc; if (current == this) { Scheduler::yield(); ASSERT_NOT_REACHED(); } return 0; } int Process::sys$execve(const char* filename, const char** argv, const char** envp) { if (!validate_read_str(filename)) return -EFAULT; if (argv) { if (!validate_read_typed(argv)) return -EFAULT; for (size_t i = 0; argv[i]; ++i) { if (!validate_read_str(argv[i])) return -EFAULT; } } if (envp) { if (!validate_read_typed(envp)) return -EFAULT; for (size_t i = 0; envp[i]; ++i) { if (!validate_read_str(envp[i])) return -EFAULT; } } String path(filename); auto parts = path.split('/'); Vector arguments; if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } Vector environment; if (envp) { for (size_t i = 0; envp[i]; ++i) environment.append(envp[i]); } int rc = exec(path, move(arguments), move(environment)); ASSERT(rc < 0); // We should never continue after a successful exec! return rc; } Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { // FIXME: Don't split() the path twice (sys$spawn also does it...) auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RetainPtr cwd; { InterruptDisabler disabler; if (auto* parent = Process::from_pid(parent_pid)) cwd = parent->m_cwd.copyRef(); } if (!cwd) cwd = VFS::the().root_inode(); auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { delete process; return nullptr; } ProcFS::the().add_process(*process); { InterruptDisabler disabler; g_processes->prepend(process); system.nprocess++; } #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip); #endif error = 0; return process; } int Process::sys$get_environment(char*** environ) { auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ"); if (!region) return -ENOMEM; MM.map_region(*this, *region); char* envpage = (char*)region->linearAddress.get(); *environ = (char**)envpage; char* bufptr = envpage + (sizeof(char*) * (m_initial_environment.size() + 1)); for (size_t i = 0; i < m_initial_environment.size(); ++i) { (*environ)[i] = bufptr; memcpy(bufptr, m_initial_environment[i].characters(), m_initial_environment[i].length()); bufptr += m_initial_environment[i].length(); *(bufptr++) = '\0'; } (*environ)[m_initial_environment.size()] = nullptr; return 0; } int Process::sys$get_arguments(int* argc, char*** argv) { auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv"); if (!region) return -ENOMEM; MM.map_region(*this, *region); char* argpage = (char*)region->linearAddress.get(); *argc = m_initial_arguments.size(); *argv = (char**)argpage; char* bufptr = argpage + (sizeof(char*) * m_initial_arguments.size()); for (size_t i = 0; i < m_initial_arguments.size(); ++i) { (*argv)[i] = bufptr; memcpy(bufptr, m_initial_arguments[i].characters(), m_initial_arguments[i].length()); bufptr += m_initial_arguments[i].length(); *(bufptr++) = '\0'; } return 0; } Process* Process::create_kernel_process(String&& name, void (*e)()) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->m_tss.eip = (dword)e; if (process->pid() != 0) { { InterruptDisabler disabler; g_processes->prepend(process); system.nprocess++; } ProcFS::the().add_process(*process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip); #endif } return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr&& cwd, RetainPtr&& executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(next_pid++) // FIXME: RACE: This variable looks racy! , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_state(Runnable) , m_ring(ring) , m_cwd(move(cwd)) , m_executable(move(executable)) , m_tty(tty) , m_ppid(ppid) { m_gids.set(m_gid); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; } else { // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though.. InterruptDisabler disabler; if (auto* parent = Process::from_pid(m_ppid)) { m_sid = parent->m_sid; m_pgid = parent->m_pgid; } } m_page_directory = make(); #ifdef MM_DEBUG dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr()); #endif if (fork_parent) { m_fds.resize(fork_parent->m_fds.size()); for (size_t i = 0; i < fork_parent->m_fds.size(); ++i) { if (!fork_parent->m_fds[i].descriptor) continue; #ifdef FORK_DEBUG dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].descriptor.ptr(), fork_parent->m_fds[i].descriptor->is_tty()); #endif m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone(); m_fds[i].flags = fork_parent->m_fds[i].flags; } } else { m_fds.resize(m_max_open_file_descriptors); if (tty) { int error; m_fds[0].set(tty->open(error, O_RDONLY)); m_fds[1].set(tty->open(error, O_WRONLY)); m_fds[2].set(tty->open(error, O_WRONLY)); } } if (fork_parent) m_nextRegion = fork_parent->m_nextRegion; else m_nextRegion = LinearAddress(0x10000000); if (fork_parent) { memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss)); } else { memset(&m_tss, 0, sizeof(m_tss)); // Only IF is set when a process boots. m_tss.eflags = 0x0202; word cs, ds, ss; if (isRing0()) { cs = 0x08; ds = 0x10; ss = 0x10; } else { cs = 0x1b; ds = 0x23; ss = 0x23; } m_tss.ds = ds; m_tss.es = ds; m_tss.fs = ds; m_tss.gs = ds; m_tss.ss = ss; m_tss.cs = cs; } m_tss.cr3 = page_directory().cr3(); if (isRing0()) { // FIXME: This memory is leaked. // But uh, there's also no kernel process termination, so I guess it's not technically leaked... dword stackBottom = (dword)kmalloc_eternal(defaultStackSize); m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8; m_tss.esp = m_stackTop0; } else { if (fork_parent) { m_stackTop3 = fork_parent->m_stackTop3; } else { auto* region = allocate_region(LinearAddress(), defaultStackSize, "stack"); ASSERT(region); m_stackTop3 = region->linearAddress.offset(defaultStackSize).get(); m_tss.esp = m_stackTop3; } } if (isRing3()) { // Ring3 processes need a separate stack for Ring0. m_kernelStack = kmalloc(defaultStackSize); m_stackTop0 = ((dword)m_kernelStack + defaultStackSize) & 0xffffff8; m_tss.ss0 = 0x10; m_tss.esp0 = m_stackTop0; } // HACK: Ring2 SS in the TSS is the current PID. m_tss.ss2 = m_pid; m_farPtr.offset = 0x98765432; } Process::~Process() { InterruptDisabler disabler; ProcFS::the().remove_process(*this); system.nprocess--; if (selector()) gdt_free_entry(selector()); if (m_kernelStack) { kfree(m_kernelStack); m_kernelStack = nullptr; } } void Process::dumpRegions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE NAME\n"); for (auto& region : m_regions) { kprintf("%x -- %x %x %s\n", region->linearAddress.get(), region->linearAddress.offset(region->size - 1).get(), region->size, region->name.characters()); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif set_state(Dead); m_termination_status = status; m_termination_signal = 0; Scheduler::pick_next_and_switch_now(); ASSERT_NOT_REACHED(); } void Process::terminate_due_to_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal); m_termination_status = 0; m_termination_signal = signal; set_state(Dead); } void Process::send_signal(byte signal, Process* sender) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); m_pending_signals |= 1 << signal; if (sender) dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid()); else dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid()); } bool Process::has_unmasked_pending_signals() const { return m_pending_signals & m_signal_mask; } bool Process::dispatch_one_pending_signal() { ASSERT_INTERRUPTS_DISABLED(); dword signal_candidates = m_pending_signals & m_signal_mask; ASSERT(signal_candidates); byte signal = 0; for (; signal < 32; ++signal) { if (signal_candidates & (1 << signal)) { break; } } return dispatch_signal(signal); } bool Process::dispatch_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal); auto& action = m_signal_action_data[signal]; // FIXME: Implement SA_SIGINFO signal handlers. ASSERT(!(action.flags & SA_SIGINFO)); auto handler_laddr = action.handler_or_sigaction; if (handler_laddr.is_null()) { // FIXME: Is termination really always the appropriate action? terminate_due_to_signal(signal); return true; } m_pending_signals &= ~(1 << signal); if (handler_laddr.asPtr() == SIG_IGN) { dbgprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal); return false; } Scheduler::prepare_to_modify_tss(*this); word ret_cs = m_tss.cs; dword ret_eip = m_tss.eip; dword ret_eflags = m_tss.eflags; bool interrupting_in_kernel = (ret_cs & 3) == 0; if (interrupting_in_kernel) { dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), toString(state()), ret_cs, ret_eip); ASSERT(is_blocked()); m_tss_to_resume_kernel = m_tss; #ifdef SIGNAL_DEBUG dbgprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip); #endif } ProcessPagingScope pagingScope(*this); if (interrupting_in_kernel) { if (!m_signal_stack_user_region) { m_signal_stack_user_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (user)"); ASSERT(m_signal_stack_user_region); m_signal_stack_kernel_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (kernel)"); ASSERT(m_signal_stack_user_region); } m_tss.ss = 0x23; m_tss.esp = m_signal_stack_user_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; m_tss.ss0 = 0x10; m_tss.esp0 = m_signal_stack_kernel_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; push_value_on_stack(ret_eflags); push_value_on_stack(ret_cs); push_value_on_stack(ret_eip); } else { push_value_on_stack(ret_cs); push_value_on_stack(ret_eip); push_value_on_stack(ret_eflags); } // PUSHA dword old_esp = m_tss.esp; push_value_on_stack(m_tss.eax); push_value_on_stack(m_tss.ecx); push_value_on_stack(m_tss.edx); push_value_on_stack(m_tss.ebx); push_value_on_stack(old_esp); push_value_on_stack(m_tss.ebp); push_value_on_stack(m_tss.esi); push_value_on_stack(m_tss.edi); m_tss.eax = (dword)signal; m_tss.cs = 0x1b; m_tss.ds = 0x23; m_tss.es = 0x23; m_tss.fs = 0x23; m_tss.gs = 0x23; m_tss.eip = handler_laddr.get(); if (m_return_to_ring3_from_signal_trampoline.is_null()) { // FIXME: This should be a global trampoline shared by all processes, not one created per process! // FIXME: Remap as read-only after setup. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true); m_return_to_ring3_from_signal_trampoline = region->linearAddress; byte* code_ptr = m_return_to_ring3_from_signal_trampoline.asPtr(); *code_ptr++ = 0x61; // popa *code_ptr++ = 0x9d; // popf *code_ptr++ = 0xc3; // ret *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr); *code_ptr++ = 0x61; // popa *code_ptr++ = 0xb8; // mov eax, *(dword*)code_ptr = Syscall::SC_sigreturn; code_ptr += sizeof(dword); *code_ptr++ = 0xcd; // int 0x80 *code_ptr++ = 0x80; *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; // FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that // unmasks the signal so it can be received again? I guess then I would need one trampoline // per signal number if it's hard-coded, but it's just a few bytes per each. } if (interrupting_in_kernel) push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get()); else push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get()); // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal. set_state(Skip1SchedulerPass); #ifdef SIGNAL_DEBUG dbgprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), toString(state()), m_tss.cs, m_tss.eip); #endif return true; } void Process::sys$sigreturn() { InterruptDisabler disabler; Scheduler::prepare_to_modify_tss(*this); m_tss = m_tss_to_resume_kernel; #ifdef SIGNAL_DEBUG dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid()); dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip); #endif set_state(Skip1SchedulerPass); Scheduler::yield(); kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid()); ASSERT_NOT_REACHED(); } void Process::push_value_on_stack(dword value) { m_tss.esp -= 4; dword* stack_ptr = (dword*)m_tss.esp; *stack_ptr = value; } void Process::crash() { ASSERT_INTERRUPTS_DISABLED(); ASSERT(state() != Dead); m_termination_signal = SIGSEGV; set_state(Dead); dumpRegions(); Scheduler::pick_next_and_switch_now(); ASSERT_NOT_REACHED(); } Process* Process::from_pid(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process; process = process->next()) { if (process->pid() == pid) return process; } return nullptr; } FileDescriptor* Process::file_descriptor(int fd) { if (fd < 0) return nullptr; if ((size_t)fd < m_fds.size()) return m_fds[fd].descriptor.ptr(); return nullptr; } const FileDescriptor* Process::file_descriptor(int fd) const { if (fd < 0) return nullptr; if ((size_t)fd < m_fds.size()) return m_fds[fd].descriptor.ptr(); return nullptr; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size) { if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->get_dir_entries((byte*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, size_t size) { if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_tty()) return -ENOTTY; auto ttyName = descriptor->tty()->tty_name(); if (size < ttyName.length() + 1) return -ERANGE; strcpy(buffer, ttyName.characters()); return 0; } int Process::sys$ptsname_r(int fd, char* buffer, size_t size) { if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; auto* master_pty = descriptor->master_pty(); if (!master_pty) return -ENOTTY; auto pts_name = master_pty->pts_name(); if (size < pts_name.length() + 1) return -ERANGE; strcpy(buffer, pts_name.characters()); return 0; } ssize_t Process::sys$write(int fd, const void* data, size_t size) { if (!validate_read(data, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size); #endif auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; ssize_t nwritten = 0; if (descriptor->is_blocking()) { while (nwritten < (ssize_t)size) { #ifdef IO_DEBUG dbgprintf("while %u < %u\n", nwritten, size); #endif if (!descriptor->can_write(*this)) { #ifdef IO_DEBUG dbgprintf("block write on %d\n", fd); #endif m_blocked_fd = fd; block(BlockedWrite); Scheduler::yield(); } ssize_t rc = descriptor->write(*this, (const byte*)data + nwritten, size - nwritten); #ifdef IO_DEBUG dbgprintf(" -> write returned %d\n", rc); #endif if (rc < 0) { // FIXME: Support returning partial nwritten with errno. ASSERT(nwritten == 0); return rc; } if (rc == 0) break; if (has_unmasked_pending_signals()) { block(BlockedSignal); Scheduler::yield(); if (nwritten == 0) return -EINTR; } nwritten += rc; } } else { nwritten = descriptor->write(*this, (const byte*)data, size); } if (has_unmasked_pending_signals()) { block(BlockedSignal); Scheduler::yield(); if (nwritten == 0) return -EINTR; } #ifdef DEBUG_IO dbgprintf("%s(%u) sys$write: nwritten=%u\n", name().characters(), pid(), nwritten); #endif return nwritten; } ssize_t Process::sys$read(int fd, void* outbuf, size_t nread) { if (!validate_write(outbuf, nread)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, outbuf, nread); #endif auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; #ifdef DEBUG_IO dbgprintf(" > descriptor:%p, is_blocking:%u, can_read:%u\n", descriptor, descriptor->is_blocking(), descriptor->can_read(*this)); dbgprintf(" > inode:K%x, device:K%x\n", descriptor->inode(), descriptor->character_device()); #endif if (descriptor->is_blocking()) { if (!descriptor->can_read(*this)) { m_blocked_fd = fd; block(BlockedRead); sched_yield(); if (m_was_interrupted_while_blocked) return -EINTR; } } nread = descriptor->read(*this, (byte*)outbuf, nread); #ifdef DEBUG_IO dbgprintf("%s(%u) Process::sys$read: nread=%u\n", name().characters(), pid(), nread); #endif return nread; } int Process::sys$close(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; int rc = descriptor->close(); m_fds[fd] = { }; return rc; } int Process::sys$utime(const char* pathname, const Unix::utimbuf* buf) { if (!validate_read_str(pathname)) return -EFAULT; if (buf && !validate_read_typed(buf)) return -EFAULT; String path(pathname); int error; auto descriptor = VFS::the().open(move(path), error, 0, 0, cwd_inode()->identifier()); if (!descriptor) return error; auto& inode = *descriptor->inode(); if (inode.fs().is_readonly()) return -EROFS; Unix::time_t atime; Unix::time_t mtime; if (buf) { atime = buf->actime; mtime = buf->modtime; } else { auto now = RTC::now(); mtime = now; atime = now; } inode.set_atime(atime); inode.set_mtime(mtime); return 0; } int Process::sys$access(const char* pathname, int mode) { (void) mode; if (!validate_read_str(pathname)) return -EFAULT; ASSERT_NOT_REACHED(); } int Process::sys$fcntl(int fd, int cmd, dword arg) { (void) cmd; (void) arg; dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg); auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; // NOTE: The FD flags are not shared between FileDescriptor objects. // This means that dup() doesn't copy the FD_CLOEXEC flag! switch (cmd) { case F_DUPFD: { int arg_fd = (int)arg; if (arg_fd < 0) return -EINVAL; int new_fd = -1; for (int i = arg_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) { new_fd = i; break; } } if (new_fd == -1) return -EMFILE; m_fds[new_fd].set(descriptor); break; } case F_GETFD: return m_fds[fd].flags; case F_SETFD: m_fds[fd].flags = arg; break; case F_GETFL: return descriptor->file_flags(); case F_SETFL: // FIXME: Support changing O_NONBLOCK descriptor->set_file_flags(arg); break; default: ASSERT_NOT_REACHED(); } return 0; } int Process::sys$fstat(int fd, Unix::stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; descriptor->stat(statbuf); return 0; } int Process::sys$lstat(const char* path, Unix::stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; int error; auto descriptor = VFS::the().open(move(path), error, O_NOFOLLOW_NOERROR, 0, cwd_inode()->identifier()); if (!descriptor) return error; descriptor->stat(statbuf); return 0; } int Process::sys$stat(const char* path, Unix::stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; int error; auto descriptor = VFS::the().open(move(path), error, 0, 0, cwd_inode()->identifier()); if (!descriptor) return error; descriptor->stat(statbuf); return 0; } int Process::sys$readlink(const char* path, char* buffer, size_t size) { if (!validate_read_str(path)) return -EFAULT; if (!validate_write(buffer, size)) return -EFAULT; int error; auto descriptor = VFS::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, 0, cwd_inode()->identifier()); if (!descriptor) return error; if (!descriptor->metadata().isSymbolicLink()) return -EINVAL; auto contents = descriptor->read_entire_file(*this); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.pointer(), min(size, contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { if (!validate_read_str(path)) return -EFAULT; int error; auto descriptor = VFS::the().open(path, error, 0, 0, cwd_inode()->identifier()); if (!descriptor) return error; if (!descriptor->is_directory()) return -ENOTDIR; m_cwd = descriptor->inode(); return 0; } int Process::sys$getcwd(char* buffer, size_t size) { if (!validate_write(buffer, size)) return -EFAULT; ASSERT(cwd_inode()); auto path = VFS::the().absolute_path(*cwd_inode()); if (path.is_null()) return -EINVAL; if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return 0; } size_t Process::number_of_open_file_descriptors() const { size_t count = 0; for (auto& descriptor : m_fds) { if (descriptor) ++count; } return count; } int Process::sys$open(const char* path, int options, mode_t mode) { #ifdef DEBUG_IO dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path); #endif if (!validate_read_str(path)) return -EFAULT; if (number_of_open_file_descriptors() >= m_max_open_file_descriptors) return -EMFILE; int error = -EWHYTHO; ASSERT(cwd_inode()); auto descriptor = VFS::the().open(path, error, options, mode, cwd_inode()->identifier()); if (!descriptor) return error; if (options & O_DIRECTORY && !descriptor->is_directory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. if (options & O_NONBLOCK) descriptor->set_blocking(false); int fd = 0; for (; fd < (int)m_max_open_file_descriptors; ++fd) { if (!m_fds[fd]) break; } dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(descriptor), flags); return fd; } int Process::alloc_fd() { int fd = -1; for (int i = 0; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) { fd = i; break; } } return fd; } int Process::sys$pipe(int pipefd[2]) { if (!validate_write_typed(pipefd)) return -EFAULT; if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors()) return -EMFILE; auto fifo = FIFO::create(); int reader_fd = alloc_fd(); m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo)); pipefd[0] = reader_fd; int writer_fd = alloc_fd(); m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo)); pipefd[1] = writer_fd; return 0; } int Process::sys$killpg(int pgrp, int signum) { if (signum < 1 || signum >= 32) return -EINVAL; (void) pgrp; ASSERT_NOT_REACHED(); } int Process::sys$setuid(uid_t) { ASSERT_NOT_REACHED(); } int Process::sys$setgid(gid_t) { ASSERT_NOT_REACHED(); } unsigned Process::sys$alarm(unsigned seconds) { (void) seconds; ASSERT_NOT_REACHED(); } int Process::sys$uname(utsname* buf) { if (!validate_write_typed(buf)) return -EFAULT; strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i386"); strcpy(buf->nodename, getHostname().characters()); return 0; } int Process::sys$isatty(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_tty()) return -ENOTTY; return 1; } int Process::sys$kill(pid_t pid, int signal) { if (pid == 0) { // FIXME: Send to same-group processes. ASSERT(pid != 0); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } ASSERT(pid != current->pid()); // FIXME: Support this scenario. InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; peer->send_signal(signal, this); return 0; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; sleep(seconds * TICKS_PER_SECOND); if (m_wakeupTime > system.uptime) { ASSERT(m_was_interrupted_while_blocked); dword ticks_left_until_original_wakeup_time = m_wakeupTime - system.uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } int Process::sys$gettimeofday(timeval* tv) { if (!validate_write_typed(tv)) return -EFAULT; InterruptDisabler disabler; auto now = RTC::now(); tv->tv_sec = now; tv->tv_usec = 0; return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } uid_t Process::sys$geteuid() { return m_euid; } gid_t Process::sys$getegid() { return m_egid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$getppid() { return m_ppid; } mode_t Process::sys$umask(mode_t mask) { auto old_mask = m_umask; m_umask = mask; return old_mask; } int Process::reap(Process& process) { InterruptDisabler disabler; int exit_status = (process.m_termination_status << 8) | process.m_termination_signal; if (process.ppid()) { auto* parent = Process::from_pid(process.ppid()); ASSERT(parent); parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children; } dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), toString(process.state())); ASSERT(process.state() == Dead); g_processes->remove(&process); delete &process; return exit_status; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options); // FIXME: Respect options (void) options; if (wstatus) if (!validate_write_typed(wstatus)) return -EFAULT; int dummy_wstatus; int& exit_status = wstatus ? *wstatus : dummy_wstatus; { InterruptDisabler disabler; if (waitee != -1 && !Process::from_pid(waitee)) return -ECHILD; } if (options & WNOHANG) { if (waitee == -1) { pid_t reaped_pid = 0; InterruptDisabler disabler; for_each_child([&reaped_pid, &exit_status] (Process& process) { if (process.state() == Dead) { reaped_pid = process.pid(); exit_status = reap(process); } return true; }); return reaped_pid; } else { auto* waitee_process = Process::from_pid(waitee); if (!waitee_process) return -ECHILD; if (waitee_process->state() == Dead) { exit_status = reap(*waitee_process); return waitee; } return 0; } } m_waitee_pid = waitee; block(BlockedWait); sched_yield(); if (m_was_interrupted_while_blocked) return -EINTR; Process* waitee_process; { InterruptDisabler disabler; // NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler. waitee_process = Process::from_pid(m_waitee_pid); } ASSERT(waitee_process); exit_status = reap(*waitee_process); return m_waitee_pid; } void Process::unblock() { if (current == this) { system.nblocked--; m_state = Process::Running; return; } ASSERT(m_state != Process::Runnable && m_state != Process::Running); system.nblocked--; m_state = Process::Runnable; } void Process::block(Process::State new_state) { if (state() != Process::Running) { kprintf("Process::block: %s(%u) block(%u/%s) with state=%u/%s\n", name().characters(), pid(), new_state, toString(new_state), state(), toString(state())); } ASSERT(state() == Process::Running); system.nblocked++; m_was_interrupted_while_blocked = false; set_state(new_state); } void block(Process::State state) { current->block(state); sched_yield(); } void sleep(dword ticks) { ASSERT(current->state() == Process::Running); current->setWakeupTime(system.uptime + ticks); current->block(Process::BlockedSleep); sched_yield(); } bool Process::validate_read_from_kernel(LinearAddress laddr) const { // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. InterruptDisabler disabler; // FIXME: What if we're indexing into the ksym with the highest address though? if (laddr.get() >= ksym_lowest_address && laddr.get() <= ksym_highest_address) return true; if (is_kmalloc_address(laddr.asPtr())) return true; return validate_read(laddr.asPtr(), 1); } bool Process::validate_read(const void* address, size_t size) const { if ((reinterpret_cast(address) & PAGE_MASK) != ((reinterpret_cast(address) + (size - 1)) & PAGE_MASK)) { if (!MM.validate_user_read(*this, LinearAddress((dword)address).offset(size))) return false; } return MM.validate_user_read(*this, LinearAddress((dword)address)); } bool Process::validate_write(void* address, size_t size) const { if ((reinterpret_cast(address) & PAGE_MASK) != ((reinterpret_cast(address) + (size - 1)) & PAGE_MASK)) { if (!MM.validate_user_write(*this, LinearAddress((dword)address).offset(size))) return false; } return MM.validate_user_write(*this, LinearAddress((dword)address)); } pid_t Process::sys$getsid(pid_t pid) { if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; Process::for_each_in_pgrp(pid(), [&] (auto&) { found_process_with_same_pgid_as_my_pid = true; return false; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::from_pid(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::from_pid(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) return -EINVAL; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } int Process::sys$ioctl(int fd, unsigned request, unsigned arg) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_character_device()) return -ENOTTY; return descriptor->character_device()->ioctl(*this, request, arg); } int Process::sys$getdtablesize() { return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; if (number_of_open_file_descriptors() == m_max_open_file_descriptors) return -EMFILE; int new_fd = 0; for (; new_fd < (int)m_max_open_file_descriptors; ++new_fd) { if (!m_fds[new_fd]) break; } m_fds[new_fd].set(descriptor); return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; if (number_of_open_file_descriptors() == m_max_open_file_descriptors) return -EMFILE; m_fds[new_fd].set(descriptor); return new_fd; } int Process::sys$sigprocmask(int how, const Unix::sigset_t* set, Unix::sigset_t* old_set) { if (old_set) { if (!validate_read_typed(old_set)) return -EFAULT; *old_set = m_signal_mask; } if (set) { if (!validate_read_typed(set)) return -EFAULT; switch (how) { case SIG_BLOCK: m_signal_mask &= ~(*set); break; case SIG_UNBLOCK: m_signal_mask |= *set; break; case SIG_SETMASK: m_signal_mask = *set; break; default: return -EINVAL; } } return 0; } int Process::sys$sigpending(Unix::sigset_t* set) { if (!validate_read_typed(set)) return -EFAULT; *set = m_pending_signals; return 0; } int Process::sys$sigaction(int signum, const Unix::sigaction* act, Unix::sigaction* old_act) { if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP) return -EINVAL; if (!validate_read_typed(act)) return -EFAULT; InterruptDisabler disabler; // FIXME: This should use a narrower lock. auto& action = m_signal_action_data[signum]; if (old_act) { if (!validate_write_typed(old_act)) return -EFAULT; old_act->sa_flags = action.flags; old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get(); old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get(); } action.restorer = LinearAddress((dword)act->sa_restorer); action.flags = act->sa_flags; action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction); return 0; } int Process::sys$getgroups(int count, gid_t* gids) { if (count < 0) return -EINVAL; ASSERT(m_gids.size() < MAX_PROCESS_GIDS); if (!count) return m_gids.size(); if (count != (int)m_gids.size()) return -EINVAL; if (!validate_write_typed(gids, m_gids.size())) return -EFAULT; size_t i = 0; for (auto gid : m_gids) gids[i++] = gid; return 0; } int Process::sys$setgroups(size_t count, const gid_t* gids) { if (!is_root()) return -EPERM; if (count >= MAX_PROCESS_GIDS) return -EINVAL; if (!validate_read(gids, count)) return -EFAULT; m_gids.clear(); m_gids.set(m_gid); for (size_t i = 0; i < count; ++i) m_gids.set(gids[i]); return 0; } int Process::sys$mkdir(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; if (strlen(pathname) >= 255) return -ENAMETOOLONG; int error; if (!VFS::the().mkdir(pathname, mode, cwd_inode()->identifier(), error)) return error; return 0; } Unix::clock_t Process::sys$times(Unix::tms* times) { if (!validate_write_typed(times)) return -EFAULT; times->tms_utime = m_ticks_in_user; times->tms_stime = m_ticks_in_kernel; times->tms_cutime = m_ticks_in_user_for_dead_children; times->tms_cstime = m_ticks_in_kernel_for_dead_children; return 0; } struct vbe_info_structure { char signature[4]; // must be "VESA" to indicate valid VBE support word version; // VBE version; high byte is major version, low byte is minor version dword oem; // segment:offset pointer to OEM dword capabilities; // bitfield that describes card capabilities dword video_modes; // segment:offset pointer to list of supported video modes word video_memory; // amount of video memory in 64KB blocks word software_rev; // software revision dword vendor; // segment:offset to card vendor string dword product_name; // segment:offset to card model name dword product_rev; // segment:offset pointer to product revision char reserved[222]; // reserved for future expansion char oem_data[256]; // OEM BIOSes store their strings in this area } __attribute__ ((packed)); struct vbe_mode_info_structure { word attributes; // deprecated, only bit 7 should be of interest to you, and it indicates the mode supports a linear frame buffer. byte window_a; // deprecated byte window_b; // deprecated word granularity; // deprecated; used while calculating bank numbers word window_size; word segment_a; word segment_b; dword win_func_ptr; // deprecated; used to switch banks from protected mode without returning to real mode word pitch; // number of bytes per horizontal line word width; // width in pixels word height; // height in pixels byte w_char; // unused... byte y_char; // ... byte planes; byte bpp; // bits per pixel in this mode byte banks; // deprecated; total number of banks in this mode byte memory_model; byte bank_size; // deprecated; size of a bank, almost always 64 KB but may be 16 KB... byte image_pages; byte reserved0; byte red_mask; byte red_position; byte green_mask; byte green_position; byte blue_mask; byte blue_position; byte reserved_mask; byte reserved_position; byte direct_color_attributes; dword framebuffer; // physical address of the linear frame buffer; write here to draw to the screen dword off_screen_mem_off; word off_screen_mem_size; // size of memory in the framebuffer but not being displayed on the screen byte reserved1[206]; } __attribute__ ((packed)); DisplayInfo Process::get_display_info() { DisplayInfo info; //auto* vinfo = reinterpret_cast(0xc000); auto* vmode = reinterpret_cast(0x2000); dbgprintf("VESA framebuffer, %ux%u, %u bpp @ P%x\n", vmode->width, vmode->height, vmode->bpp, vmode->framebuffer); dbgprintf("Returning display info in %s<%u>\n", name().characters(), pid()); info.width = vmode->width; info.height = vmode->height; info.bpp = vmode->bpp; info.pitch = vmode->pitch; size_t framebuffer_size = info.pitch * info.height; if (!m_display_framebuffer_region) { auto framebuffer_vmo = VMObject::create_framebuffer_wrapper(PhysicalAddress(vmode->framebuffer), framebuffer_size); m_display_framebuffer_region = allocate_region_with_vmo(LinearAddress(0xe0000000), framebuffer_size, move(framebuffer_vmo), 0, "framebuffer", true, true); } info.framebuffer = m_display_framebuffer_region->linearAddress.asPtr(); return info; } int Process::sys$select(const Syscall::SC_select_params* params) { if (!validate_read_typed(params)) return -EFAULT; if (params->writefds && !validate_read_typed(params->writefds)) return -EFAULT; if (params->readfds && !validate_read_typed(params->readfds)) return -EFAULT; if (params->exceptfds && !validate_read_typed(params->exceptfds)) return -EFAULT; if (params->timeout && !validate_read_typed(params->timeout)) return -EFAULT; int nfds = params->nfds; fd_set* writefds = params->writefds; fd_set* readfds = params->readfds; fd_set* exceptfds = params->exceptfds; auto* timeout = params->timeout; // FIXME: Implement exceptfds support. ASSERT(!exceptfds); // FIXME: Implement timeout support. ASSERT(!timeout || (!timeout->tv_sec && !timeout->tv_usec)); if (nfds < 0) return -EINVAL; // FIXME: Return -EBADF if one of the fd sets contains an invalid fd. // FIXME: Return -EINTR if a signal is caught. // FIXME: Return -EINVAL if timeout is invalid. auto transfer_fds = [nfds] (fd_set* set, auto& vector) { if (!set) return; vector.clear_with_capacity(); auto bitmap = Bitmap::wrap((byte*)set, FD_SETSIZE); for (int i = 0; i < nfds; ++i) { if (bitmap.get(i)) vector.append(i); } }; transfer_fds(writefds, m_select_write_fds); transfer_fds(readfds, m_select_read_fds); #ifdef DEBUG_IO dbgprintf("%s<%u> selecting on (read:%u, write:%u), wakeup_req:%u, timeout=%p\n", name().characters(), pid(), m_select_read_fds.size(), m_select_write_fds.size(), m_wakeup_requested, timeout); #endif if (!m_wakeup_requested && (!timeout || (timeout->tv_sec || timeout->tv_usec))) { block(BlockedSelect); Scheduler::yield(); } m_wakeup_requested = false; int markedfds = 0; if (readfds) { memset(readfds, 0, sizeof(fd_set)); auto bitmap = Bitmap::wrap((byte*)readfds, FD_SETSIZE); for (int fd : m_select_read_fds) { if (m_fds[fd].descriptor->can_read(*this)) { bitmap.set(fd, true); ++markedfds; } } } if (writefds) { memset(writefds, 0, sizeof(fd_set)); auto bitmap = Bitmap::wrap((byte*)writefds, FD_SETSIZE); for (int fd : m_select_write_fds) { if (m_fds[fd].descriptor->can_write(*this)) { bitmap.set(fd, true); ++markedfds; } } } return markedfds; } Inode* Process::cwd_inode() { // FIXME: This is retarded factoring. if (!m_cwd) m_cwd = VFS::the().root_inode(); return m_cwd.ptr(); }