serenity/AK/SIMDExtras.h
2024-08-08 22:43:53 -04:00

289 lines
9.1 KiB
C++

/*
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/BitCast.h>
#include <AK/Concepts.h>
#include <AK/SIMD.h>
namespace AK::SIMD {
// SIMD Vector Expansion
ALWAYS_INLINE static constexpr f32x4 expand4(float f)
{
return f32x4 { f, f, f, f };
}
ALWAYS_INLINE static constexpr i32x4 expand4(i32 i)
{
return i32x4 { i, i, i, i };
}
ALWAYS_INLINE static constexpr u32x4 expand4(u32 u)
{
return u32x4 { u, u, u, u };
}
// Masking
ALWAYS_INLINE static i32 maskbits(i32x4 mask)
{
#if defined(__SSE__)
return __builtin_ia32_movmskps((f32x4)mask);
#else
return ((mask[0] & 0x80000000) >> 31) | ((mask[1] & 0x80000000) >> 30) | ((mask[2] & 0x80000000) >> 29) | ((mask[3] & 0x80000000) >> 28);
#endif
}
ALWAYS_INLINE static bool all(i32x4 mask)
{
return maskbits(mask) == 15;
}
ALWAYS_INLINE static bool any(i32x4 mask)
{
return maskbits(mask) != 0;
}
ALWAYS_INLINE static bool none(i32x4 mask)
{
return maskbits(mask) == 0;
}
ALWAYS_INLINE static int maskcount(i32x4 mask)
{
constexpr static int count_lut[16] { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
return count_lut[maskbits(mask)];
}
// Load / Store
template<SIMDVector VectorType>
ALWAYS_INLINE static VectorType load_unaligned(void const* a)
{
VectorType v;
__builtin_memcpy(&v, a, sizeof(VectorType));
return v;
}
template<SIMDVector VectorType>
ALWAYS_INLINE static void store_unaligned(void* a, VectorType const& v)
{
// FIXME: Does this generate the right instructions?
__builtin_memcpy(a, &v, sizeof(VectorType));
}
ALWAYS_INLINE static f32x4 load4(float const* a, float const* b, float const* c, float const* d)
{
return f32x4 { *a, *b, *c, *d };
}
ALWAYS_INLINE static u32x4 load4(u32 const* a, u32 const* b, u32 const* c, u32 const* d)
{
return u32x4 { *a, *b, *c, *d };
}
ALWAYS_INLINE static f32x4 load4_masked(float const* a, float const* b, float const* c, float const* d, i32x4 mask)
{
int bits = maskbits(mask);
return f32x4 {
bits & 1 ? *a : 0.f,
bits & 2 ? *b : 0.f,
bits & 4 ? *c : 0.f,
bits & 8 ? *d : 0.f,
};
}
ALWAYS_INLINE static i32x4 load4_masked(u8 const* a, u8 const* b, u8 const* c, u8 const* d, i32x4 mask)
{
int bits = maskbits(mask);
return i32x4 {
bits & 1 ? *a : 0,
bits & 2 ? *b : 0,
bits & 4 ? *c : 0,
bits & 8 ? *d : 0,
};
}
ALWAYS_INLINE static u32x4 load4_masked(u32 const* a, u32 const* b, u32 const* c, u32 const* d, i32x4 mask)
{
int bits = maskbits(mask);
return u32x4 {
bits & 1 ? *a : 0u,
bits & 2 ? *b : 0u,
bits & 4 ? *c : 0u,
bits & 8 ? *d : 0u,
};
}
template<typename VectorType, typename UnderlyingType = decltype(declval<VectorType>()[0])>
ALWAYS_INLINE static void store4(VectorType v, UnderlyingType* a, UnderlyingType* b, UnderlyingType* c, UnderlyingType* d)
{
*a = v[0];
*b = v[1];
*c = v[2];
*d = v[3];
}
template<typename VectorType, typename UnderlyingType = decltype(declval<VectorType>()[0])>
ALWAYS_INLINE static void store4_masked(VectorType v, UnderlyingType* a, UnderlyingType* b, UnderlyingType* c, UnderlyingType* d, i32x4 mask)
{
int bits = maskbits(mask);
if (bits & 1)
*a = v[0];
if (bits & 2)
*b = v[1];
if (bits & 4)
*c = v[2];
if (bits & 8)
*d = v[3];
}
// Shuffle
namespace Detail {
template<SIMDVector T, SIMDVector Control, size_t... Idx>
ALWAYS_INLINE static T shuffle_impl(T a, Control control, IndexSequence<Idx...>)
{
// FIXME: Maybe make the VERIFYs optional, eg on SIMD-DEBUG, to avoid the overhead in performance oriented users, like LibWasm::SIMD
// Note: - instead of _ to make the linter happy, as SIMD-DEBUG does not (yet) exist
constexpr Conditional<IsSigned<ElementOf<Control>>, ssize_t, size_t> N = vector_length<T>;
// If you hit this verify and want a 0 in these cases instead, use shuffle_or_0
(([control] { VERIFY(control[Idx] < N); })(), ...);
// __builtin_shuffle is only available with GCC, and has quite good codegen
if constexpr (__has_builtin(__builtin_shuffle))
return __builtin_shuffle(a, control);
return T {
a[control[Idx]]...
};
}
// FIXME: AppleClang somehow unconditionally executes the `a[control[Idx]]` path,
// even if its in the false branch of the ternary
// This leads to a presumably out of bounds access, which is UB
// Reenable the sanitizer once this is fixed
// As a side note UBsan makes a total mess of the codegen anyway
template<SIMDVector T, SIMDVector Control, size_t... Idx>
#ifdef AK_COMPILER_CLANG
[[clang::no_sanitize("undefined")]]
#endif
ALWAYS_INLINE static T shuffle_or_0_impl(T a, Control control, IndexSequence<Idx...>)
{
constexpr Conditional<IsSigned<ElementOf<Control>>, ssize_t, size_t> N = vector_length<T>;
using E = ElementOf<T>;
if constexpr (__has_builtin(__builtin_shuffle)) {
auto vector = __builtin_shuffle(a, control);
for (size_t i = 0; i < N; ++i)
vector[i] = control[i] < 0 || control[i] >= N ? 0 : vector[i];
return vector;
}
// 1. Set all out of bounds values to ~0
// Note: This is done so that the optimization mentioned down below works
// Note: Vector compares result in bitmasks, aka all 1s or all 0s per element
control |= ~((control >= 0) & (control < N));
// 2. Selectively set out of bounds values to 0
// Note: Clang successfully optimizes this to a few instructions on x86-ssse3, GCC does not
// Vector Optimizations/Instruction-Selection on ArmV8 seem to not be as powerful as of Clang18
// FIXME: We could recreate the bit mask Clang uses for the select for u32 and u16
// control = control * explode_byte(sizeof(E)) + 0x03020100;
// return (T)shuffle_unchecked(Bytes(a), Bytes(control));
// Note: On x86-ssse3, `pshufb` inserts a zero if the control byte has the highest bit set
// On ArmV8, `tbl` inserts a zero if the control byte is out of bounds in general
// On RiscV `vrgather.vv` inserts a 0 if the control index is out of bounds
// and is more powerful than the other two as it is able to use bigger item widths than a byte
// Note: For u64x2 Clang seems to always unroll the compare instead of doing the fancy `phufb`
return T {
((E)(control[Idx] != ~0 ? a[control[Idx]] : 0))...
};
}
template<SIMDVector T, size_t... Idx>
ALWAYS_INLINE static T item_reverse_impl(T a, IndexSequence<Idx...>)
{
constexpr size_t N = vector_length<T>;
return __builtin_shufflevector(a, a, N - 1 - Idx...);
}
template<SIMDVector T, size_t... Idx>
ALWAYS_INLINE static T byte_reverse_impl(T a, IndexSequence<Idx...>)
{
static_assert(sizeof...(Idx) == sizeof(T));
constexpr size_t N = sizeof(T);
// FIXME: GCC silently ignores the dependent vector_size attribute, this seems to be a bug
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68703
// Hence this giant conditional
using BytesVector = Conditional<sizeof(T) == 2, u8x2, Conditional<sizeof(T) == 4, u8x4, Conditional<sizeof(T) == 8, u8x8, Conditional<sizeof(T) == 16, u8x16, Conditional<sizeof(T) == 32, u8x32, void>>>>>;
static_assert(sizeof(BytesVector) == sizeof(T));
return bit_cast<T>(
__builtin_shufflevector(
bit_cast<BytesVector>(a),
bit_cast<BytesVector>(a),
N - 1 - Idx...));
}
template<SIMDVector T, size_t... Idx>
ALWAYS_INLINE static T elementwise_byte_reverse_impl(T a, IndexSequence<Idx...>)
{
static_assert(sizeof...(Idx) == vector_length<T>);
using Element = ElementOf<T>;
if constexpr (sizeof(Element) == 1) {
return a;
} else if constexpr (sizeof(Element) == 2) {
return T {
static_cast<Element>(__builtin_bswap16(static_cast<u16>(a[Idx])))...
};
} else if constexpr (sizeof(Element) == 4) {
return T {
static_cast<Element>(__builtin_bswap32(static_cast<u32>(a[Idx])))...
};
} else if constexpr (sizeof(Element) == 8) {
return T {
static_cast<Element>(__builtin_bswap64(static_cast<u64>(a[Idx])))...
};
} else {
static_assert(DependentFalse<T>);
}
}
}
// FIXME: Shuffles only work with integral types for now
template<SIMDVector T>
ALWAYS_INLINE static T shuffle(T a, IndexVectorFor<T> control)
{
return Detail::shuffle_impl(a, control, MakeIndexSequence<vector_length<T>>());
}
template<SIMDVector T>
ALWAYS_INLINE static T shuffle_or_0(T a, IndexVectorFor<T> control)
{
return Detail::shuffle_or_0_impl(a, control, MakeIndexSequence<vector_length<T>>());
}
template<SIMDVector T>
ALWAYS_INLINE static T item_reverse(T a)
{
return Detail::item_reverse_impl(a, MakeIndexSequence<vector_length<T>>());
}
template<SIMDVector T>
ALWAYS_INLINE static T byte_reverse(T a)
{
return Detail::byte_reverse_impl(a, MakeIndexSequence<sizeof(T)>());
}
template<SIMDVector T>
ALWAYS_INLINE static T elementwise_byte_reverse(T a)
{
return Detail::elementwise_byte_reverse_impl(a, MakeIndexSequence<vector_length<T>>());
}
}