serenity/Kernel/Devices/SerialDevice.cpp
Andreas Kling 11eee67b85 Kernel: Make self-contained locking smart pointers their own classes
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:

- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable

This patch renames the Kernel classes so that they can coexist with
the original AK classes:

- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable

The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
2022-08-20 17:20:43 +02:00

173 lines
4.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Sections.h>
namespace Kernel {
#define SERIAL_COM1_ADDR 0x3F8
#define SERIAL_COM2_ADDR 0x2F8
#define SERIAL_COM3_ADDR 0x3E8
#define SERIAL_COM4_ADDR 0x2E8
UNMAP_AFTER_INIT NonnullLockRefPtr<SerialDevice> SerialDevice::must_create(size_t com_number)
{
// FIXME: This way of blindly doing release_value is really not a good thing, find
// a way to propagate errors back.
LockRefPtr<SerialDevice> serial_device;
switch (com_number) {
case 0: {
serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM1_ADDR), 64).release_value();
break;
}
case 1: {
serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM2_ADDR), 65).release_value();
break;
}
case 2: {
serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM3_ADDR), 66).release_value();
break;
}
case 3: {
serial_device = DeviceManagement::try_create_device<SerialDevice>(IOAddress(SERIAL_COM4_ADDR), 67).release_value();
break;
}
default:
break;
}
return serial_device.release_nonnull();
}
UNMAP_AFTER_INIT SerialDevice::SerialDevice(IOAddress base_addr, unsigned minor)
: CharacterDevice(4, minor)
, m_base_addr(base_addr)
{
initialize();
}
UNMAP_AFTER_INIT SerialDevice::~SerialDevice() = default;
bool SerialDevice::can_read(OpenFileDescription const&, u64) const
{
return (get_line_status() & DataReady) != 0;
}
ErrorOr<size_t> SerialDevice::read(OpenFileDescription&, u64, UserOrKernelBuffer& buffer, size_t size)
{
if (!size)
return 0;
SpinlockLocker lock(m_serial_lock);
if (!(get_line_status() & DataReady))
return 0;
return buffer.write_buffered<128>(size, [&](Bytes bytes) {
for (auto& byte : bytes)
byte = m_base_addr.in<u8>();
return bytes.size();
});
}
bool SerialDevice::can_write(OpenFileDescription const&, u64) const
{
return (get_line_status() & EmptyTransmitterHoldingRegister) != 0;
}
ErrorOr<size_t> SerialDevice::write(OpenFileDescription& description, u64, UserOrKernelBuffer const& buffer, size_t size)
{
if (!size)
return 0;
SpinlockLocker lock(m_serial_lock);
if (!can_write(description, size))
return EAGAIN;
return buffer.read_buffered<128>(size, [&](ReadonlyBytes bytes) {
for (const auto& byte : bytes)
put_char(byte);
return bytes.size();
});
}
void SerialDevice::put_char(char ch)
{
while ((get_line_status() & EmptyTransmitterHoldingRegister) == 0)
;
if (ch == '\n' && !m_last_put_char_was_carriage_return)
m_base_addr.out<u8>('\r');
m_base_addr.out<u8>(ch);
m_last_put_char_was_carriage_return = (ch == '\r');
}
UNMAP_AFTER_INIT void SerialDevice::initialize()
{
set_interrupts(false);
set_baud(Baud38400);
set_line_control(None, One, EightBits);
set_fifo_control(EnableFIFO | ClearReceiveFIFO | ClearTransmitFIFO | TriggerLevel4);
set_modem_control(RequestToSend | DataTerminalReady);
}
UNMAP_AFTER_INIT void SerialDevice::set_interrupts(bool interrupt_enable)
{
m_interrupt_enable = interrupt_enable;
m_base_addr.offset(1).out<u8>(interrupt_enable);
}
void SerialDevice::set_baud(Baud baud)
{
m_baud = baud;
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() | 0x80); // turn on DLAB
m_base_addr.out<u8>(((u8)(baud)) & 0xff); // lower half of divisor
m_base_addr.offset(1).out<u8>(((u8)(baud)) >> 2); // upper half of divisor
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & 0x7f); // turn off DLAB
}
void SerialDevice::set_fifo_control(u8 fifo_control)
{
m_fifo_control = fifo_control;
m_base_addr.offset(2).out<u8>(fifo_control);
}
void SerialDevice::set_line_control(ParitySelect parity_select, StopBits stop_bits, WordLength word_length)
{
m_parity_select = parity_select;
m_stop_bits = stop_bits;
m_word_length = word_length;
m_base_addr.offset(3).out<u8>((m_base_addr.offset(3).in<u8>() & ~0x3f) | parity_select | stop_bits | word_length);
}
void SerialDevice::set_break_enable(bool break_enable)
{
m_break_enable = break_enable;
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & (break_enable ? 0xff : 0xbf));
}
void SerialDevice::set_modem_control(u8 modem_control)
{
m_modem_control = modem_control;
m_base_addr.offset(4).out<u8>(modem_control);
}
u8 SerialDevice::get_line_status() const
{
return m_base_addr.offset(5).in<u8>();
}
}