serenity/Kernel/Arch/Processor.h
2023-10-28 10:36:06 -06:00

295 lines
8.6 KiB
C++

/*
* Copyright (c) 2018-2021, James Mintram <me@jamesrm.com>
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Function.h>
#include <Kernel/Arch/CPUID.h>
#include <Kernel/Arch/DeferredCallEntry.h>
#include <Kernel/Arch/DeferredCallPool.h>
#include <Kernel/Arch/FPUState.h>
#include <Kernel/Arch/ProcessorSpecificDataID.h>
#include <Kernel/Memory/VirtualAddress.h>
#if ARCH(X86_64)
# include <Kernel/Arch/x86_64/DescriptorTable.h>
#endif
namespace Kernel {
enum class InterruptsState {
Enabled,
Disabled
};
namespace Memory {
class PageDirectory;
}
struct TrapFrame;
class Thread;
class Processor;
extern Atomic<u32> g_total_processors;
extern FPUState s_clean_fpu_state;
// context_first_init is an architecture-specific detail with various properties.
// All variants eventually call into the common code here.
void do_context_first_init(Thread* from_thread, Thread* to_thread);
extern "C" void exit_kernel_thread(void);
extern "C" void thread_context_first_enter(void);
extern "C" void do_assume_context(Thread* thread, u32 flags);
extern "C" FlatPtr do_init_context(Thread* thread, u32) __attribute__((used));
template<typename ProcessorT>
class ProcessorBase {
public:
template<typename T>
T* get_specific()
{
return static_cast<T*>(m_processor_specific_data[static_cast<size_t>(T::processor_specific_data_id())]);
}
void set_specific(ProcessorSpecificDataID specific_id, void* ptr)
{
m_processor_specific_data[static_cast<size_t>(specific_id)] = ptr;
}
static bool is_smp_enabled();
static void smp_enable();
static u32 smp_wake_n_idle_processors(u32 wake_count);
static void flush_tlb_local(VirtualAddress vaddr, size_t page_count);
static void flush_tlb(Memory::PageDirectory const*, VirtualAddress, size_t);
void early_initialize(u32 cpu);
void initialize(u32 cpu);
ALWAYS_INLINE static bool is_initialized();
[[noreturn]] static void halt();
void wait_for_interrupt() const;
ALWAYS_INLINE static void pause();
ALWAYS_INLINE static void wait_check();
ALWAYS_INLINE static ProcessorT& current();
static Processor& by_id(u32);
ALWAYS_INLINE u32 id() const
{
// NOTE: This variant should only be used when iterating over all
// Processor instances, or when it's guaranteed that the thread
// cannot move to another processor in between calling Processor::current
// and Processor::id, or if this fact is not important.
// All other cases should use Processor::current_id instead!
return m_cpu;
}
ALWAYS_INLINE static u32 current_id();
ALWAYS_INLINE static bool is_bootstrap_processor();
ALWAYS_INLINE bool has_nx() const;
ALWAYS_INLINE bool has_pat() const;
ALWAYS_INLINE bool has_feature(CPUFeature::Type const& feature) const
{
return m_features.has_flag(feature);
}
static StringView platform_string();
static u32 count()
{
// NOTE: because this value never changes once all APs are booted,
// we can safely bypass loading it atomically.
// NOTE: This does not work on aarch64, since the variable is never written.
return *g_total_processors.ptr();
}
void enter_trap(TrapFrame& trap, bool raise_irq);
void exit_trap(TrapFrame& trap);
static void flush_entire_tlb_local();
ALWAYS_INLINE static Thread* current_thread();
ALWAYS_INLINE static void set_current_thread(Thread& current_thread);
ALWAYS_INLINE static Thread* idle_thread();
ALWAYS_INLINE static u32 in_critical();
ALWAYS_INLINE static void enter_critical();
static void leave_critical();
void do_leave_critical();
static u32 clear_critical();
ALWAYS_INLINE static void restore_critical(u32 prev_critical);
ALWAYS_INLINE static void verify_no_spinlocks_held()
{
VERIFY(!ProcessorBase::in_critical());
}
static InterruptsState interrupts_state();
static void restore_interrupts_state(InterruptsState);
static bool are_interrupts_enabled();
ALWAYS_INLINE static void enable_interrupts();
ALWAYS_INLINE static void disable_interrupts();
ALWAYS_INLINE static FlatPtr current_in_irq();
ALWAYS_INLINE static bool is_kernel_mode();
ALWAYS_INLINE void set_idle_thread(Thread& idle_thread)
{
m_idle_thread = &idle_thread;
}
void idle_begin() const;
void idle_end() const;
u64 time_spent_idle() const;
ALWAYS_INLINE static u64 read_cpu_counter();
void check_invoke_scheduler();
void invoke_scheduler_async() { m_invoke_scheduler_async = true; }
ALWAYS_INLINE static bool current_in_scheduler();
ALWAYS_INLINE static void set_current_in_scheduler(bool value);
ALWAYS_INLINE bool is_in_scheduler() const { return m_in_scheduler; }
ALWAYS_INLINE u8 physical_address_bit_width() const
{
return m_physical_address_bit_width;
}
ALWAYS_INLINE u8 virtual_address_bit_width() const
{
return m_virtual_address_bit_width;
}
ALWAYS_INLINE static FPUState const& clean_fpu_state() { return s_clean_fpu_state; }
static void deferred_call_queue(Function<void()> callback);
static void set_thread_specific_data(VirtualAddress thread_specific_data);
[[noreturn]] void initialize_context_switching(Thread& initial_thread);
NEVER_INLINE void switch_context(Thread*& from_thread, Thread*& to_thread);
[[noreturn]] static void assume_context(Thread& thread, InterruptsState new_interrupts_state);
FlatPtr init_context(Thread& thread, bool leave_crit);
static ErrorOr<Vector<FlatPtr, 32>> capture_stack_trace(Thread& thread, size_t max_frames = 0);
protected:
ProcessorT* m_self;
CPUFeature::Type m_features;
Atomic<bool> m_halt_requested;
u8 m_physical_address_bit_width;
u8 m_virtual_address_bit_width;
private:
void* m_processor_specific_data[static_cast<size_t>(ProcessorSpecificDataID::__Count)];
Thread* m_idle_thread;
Thread* m_current_thread;
u32 m_cpu { 0 };
// FIXME: On aarch64, once there is code in place to differentiate IRQs from synchronous exceptions (syscalls),
// this member should be incremented. Also this member shouldn't be a FlatPtr.
FlatPtr m_in_irq { 0 };
volatile u32 m_in_critical;
// NOTE: Since these variables are accessed with atomic magic on x86 (through GP with a single load instruction),
// they need to be FlatPtrs or everything becomes highly unsound and breaks. They are actually just booleans.
FlatPtr m_in_scheduler;
FlatPtr m_invoke_scheduler_async;
FlatPtr m_scheduler_initialized;
DeferredCallPool m_deferred_call_pool {};
};
template class ProcessorBase<Processor>;
}
#if ARCH(X86_64)
# include <Kernel/Arch/x86_64/Processor.h>
#elif ARCH(AARCH64)
# include <Kernel/Arch/aarch64/Processor.h>
#elif ARCH(RISCV64)
# include <Kernel/Arch/riscv64/Processor.h>
#else
# error "Unknown architecture"
#endif
namespace Kernel {
template<typename T>
ALWAYS_INLINE bool ProcessorBase<T>::is_bootstrap_processor()
{
return current_id() == 0;
}
template<typename T>
InterruptsState ProcessorBase<T>::interrupts_state()
{
return Processor::are_interrupts_enabled() ? InterruptsState::Enabled : InterruptsState::Disabled;
}
template<typename T>
void ProcessorBase<T>::restore_interrupts_state(InterruptsState interrupts_state)
{
if (interrupts_state == InterruptsState::Enabled)
Processor::enable_interrupts();
else
Processor::disable_interrupts();
}
struct ProcessorMessageEntry;
struct ProcessorMessage {
using CallbackFunction = Function<void()>;
enum Type {
FlushTlb,
Callback,
};
Type type;
Atomic<u32> refs;
union {
ProcessorMessage* next; // only valid while in the pool
alignas(CallbackFunction) u8 callback_storage[sizeof(CallbackFunction)];
struct {
Memory::PageDirectory const* page_directory;
u8* ptr;
size_t page_count;
} flush_tlb;
};
bool volatile async;
ProcessorMessageEntry* per_proc_entries;
CallbackFunction& callback_value()
{
return *bit_cast<CallbackFunction*>(&callback_storage);
}
void invoke_callback()
{
VERIFY(type == Type::Callback);
callback_value()();
}
};
struct ProcessorMessageEntry {
ProcessorMessageEntry* next;
ProcessorMessage* msg;
};
template<typename T>
class ProcessorSpecific {
public:
static void initialize()
{
Processor::current().set_specific(T::processor_specific_data_id(), new T);
}
static T& get()
{
return *Processor::current().get_specific<T>();
}
};
}