mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-23 18:02:05 -05:00
3edc6ae0d6
Do this by: - Removing more instances of `LockRefPtr` and `NonnullLockRefPtr`. - Using better names of construction methods (i.e. `create` instead of `try_create`). - Only returning `NonnullRefPtr` on the `Device::try_create_device` method. - Removing a version of the `Device::try_create_device` method that called `DeviceType::try_create(forward<Args>(args)...)`, which was only used in a construction point in a VirtIO driver which now doesn't need this anymore.
1030 lines
42 KiB
C++
1030 lines
42 KiB
C++
/*
|
|
* Copyright (c) 2023, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Format.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <Kernel/Devices/Device.h>
|
|
#include <Kernel/Devices/Storage/SD/Commands.h>
|
|
#include <Kernel/Devices/Storage/SD/SDHostController.h>
|
|
#include <Kernel/Devices/Storage/StorageManagement.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#if ARCH(AARCH64)
|
|
# include <Kernel/Arch/aarch64/RPi/SDHostController.h>
|
|
#endif
|
|
|
|
namespace Kernel {
|
|
|
|
// Relevant Specifications:
|
|
// * (SDHC): SD Host Controller Simplified Specification (https://www.sdcard.org/downloads/pls/)
|
|
// * (PLSS) Physical Layer Simplified Specification (https://www.sdcard.org/downloads/pls/)
|
|
// * (BCM2835) BCM2835 ARM Peripherals (https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf)
|
|
|
|
static void delay(i64 nanoseconds)
|
|
{
|
|
auto start = TimeManagement::the().monotonic_time();
|
|
auto end = start + Duration::from_nanoseconds(nanoseconds);
|
|
while (TimeManagement::the().monotonic_time() < end)
|
|
Processor::pause();
|
|
}
|
|
|
|
constexpr u32 max_supported_sdsc_frequency = 25000000;
|
|
constexpr u32 max_supported_sdsc_frequency_high_speed = 50000000;
|
|
|
|
// In "m_registers->host_configuration_0"
|
|
// 2.2.11 Host Control 1 Register
|
|
constexpr u32 data_transfer_width_4bit = 1 << 1;
|
|
constexpr u32 high_speed_enable = 1 << 2;
|
|
constexpr u32 dma_select_adma2_32 = 0b10 << 3;
|
|
constexpr u32 dma_select_adma2_64 = 0b11 << 3;
|
|
|
|
// In "m_registers->host_configuration_1"
|
|
// In sub-register "Clock Control"
|
|
constexpr u32 internal_clock_enable = 1 << 0;
|
|
constexpr u32 internal_clock_stable = 1 << 1;
|
|
constexpr u32 sd_clock_enable = 1 << 2;
|
|
constexpr u32 sd_clock_divisor_mask = 0x0000ffc0;
|
|
|
|
// In sub-register "Timeout Control"
|
|
constexpr u32 data_timeout_counter_value_mask = 0b1111 << 16;
|
|
constexpr u32 data_timeout_counter_value_max = 0b1110 << 16;
|
|
|
|
// In sub-register "Software Reset"
|
|
constexpr u32 software_reset_for_all = 0x01000000;
|
|
|
|
// In Interrupt Status Register
|
|
constexpr u32 command_complete = 1 << 0;
|
|
constexpr u32 transfer_complete = 1 << 1;
|
|
constexpr u32 buffer_write_ready = 1 << 4;
|
|
constexpr u32 buffer_read_ready = 1 << 5;
|
|
constexpr u32 card_interrupt = 1 << 8;
|
|
|
|
// PLSS 5.1: all voltage windows
|
|
constexpr u32 acmd41_voltage = 0x00ff8000;
|
|
// PLSS 4.2.3.1: All voltage windows, XPC = 1, SDHC = 1
|
|
constexpr u32 acmd41_arg = 0x50ff8000;
|
|
|
|
constexpr size_t block_len = 512;
|
|
|
|
SDHostController::SDHostController()
|
|
: StorageController(StorageManagement::generate_relative_sd_controller_id({}))
|
|
{
|
|
}
|
|
|
|
void SDHostController::complete_current_request(AsyncDeviceRequest::RequestResult)
|
|
{
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
LockRefPtr<StorageDevice> SDHostController::device(u32 index) const
|
|
{
|
|
// FIXME: Remove this once we get rid of this hacky method in the future.
|
|
if (index != 0)
|
|
return nullptr;
|
|
if (!m_card)
|
|
return nullptr;
|
|
return *m_card;
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::initialize()
|
|
{
|
|
m_registers = get_register_map_base_address();
|
|
if (!m_registers)
|
|
return EIO;
|
|
|
|
if (host_version() != SD::HostVersion::Version3 && host_version() != SD::HostVersion::Version2)
|
|
return ENOTSUP;
|
|
|
|
TRY(reset_host_controller());
|
|
|
|
m_registers->interrupt_status_enable = 0xffffffff;
|
|
|
|
auto card_or_error = try_initialize_inserted_card();
|
|
if (card_or_error.is_error() && card_or_error.error().code() != ENODEV) {
|
|
dmesgln("SDHostController: Failed to initialize inserted card: {}", card_or_error.error());
|
|
} else if (!card_or_error.is_error()) {
|
|
m_card = card_or_error.release_value();
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
void SDHostController::try_enable_dma()
|
|
{
|
|
if (m_registers->capabilities.adma2) {
|
|
auto maybe_dma_buffer = MM.allocate_dma_buffer_pages(dma_region_size, "SDHC DMA Buffer"sv, Memory::Region::Access::ReadWrite);
|
|
if (maybe_dma_buffer.is_error()) {
|
|
dmesgln("Could not allocate DMA pages for SDHC: {}", maybe_dma_buffer.error());
|
|
} else {
|
|
m_dma_region = maybe_dma_buffer.release_value();
|
|
dbgln("Allocated SDHC DMA buffer at {}", m_dma_region->physical_page(0)->paddr());
|
|
// FIXME: This check does not seem to work, qemu supports 64 bit addressing, but we don't seem to detect it
|
|
// FIXME: Hardcoding to use the 64 bit mode leads to transfer timeouts, without any errors reported from qemu
|
|
if (host_version() != SD::HostVersion::Version3 && m_registers->capabilities.dma_64_bit_addressing_v3) {
|
|
dbgln("Setting SDHostController to operate using ADMA2 with 64 bit addressing");
|
|
m_mode = OperatingMode::ADMA2_64;
|
|
m_registers->host_configuration_0 = m_registers->host_configuration_0 | dma_select_adma2_64;
|
|
} else {
|
|
// FIXME: Use a way that guarantees memory addresses below the 32 bit threshold
|
|
VERIFY(m_dma_region->physical_page(0)->paddr().get() >> 32 == 0);
|
|
VERIFY(m_dma_region->physical_page(dma_region_size / PAGE_SIZE - 1)->paddr().get() >> 32 == 0);
|
|
|
|
dbgln("Setting SDHostController to operate using ADMA2 with 32 bit addressing");
|
|
m_mode = OperatingMode::ADMA2_32;
|
|
m_registers->host_configuration_0 = m_registers->host_configuration_0 | dma_select_adma2_32;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<SDMemoryCard>> SDHostController::try_initialize_inserted_card()
|
|
{
|
|
if (!is_card_inserted())
|
|
return ENODEV;
|
|
|
|
// PLSS 4.2: "Card Identification Mode"
|
|
// "After power-on ...the cards are initialized with ... 400KHz clock frequency."
|
|
|
|
// NOTE: The SDHC might already have been initialized (e.g. by the bootloader), let's reset it to a known configuration
|
|
if (is_sd_clock_enabled())
|
|
TRY(sd_clock_stop());
|
|
TRY(sd_clock_supply(400000));
|
|
|
|
// PLSS 4.2.3: "Card Initialization and Identification Process"
|
|
// Also see Figure 4-2 in the PLSS spec for a flowchart of the initialization process.
|
|
// Note that the steps correspond to the steps in the flowchart, although I made up the numbering and text
|
|
|
|
// 1. Send CMD0 (GO_IDLE_STATE) to the card
|
|
TRY(issue_command(SD::Commands::go_idle_state, 0));
|
|
TRY(wait_for_response());
|
|
|
|
// 2. Send CMD8 (SEND_IF_COND) to the card
|
|
// SD interface condition: 7:0 = check pattern, 11:8 = supply voltage
|
|
// 0x1aa: check pattern = 10101010, supply voltage = 1 => 2.7-3.6V
|
|
u32 const voltage_window = 0x1aa;
|
|
TRY(issue_command(SD::Commands::send_if_cond, voltage_window));
|
|
auto interface_condition_response = wait_for_response();
|
|
|
|
// 3. If the card does not respond to CMD8 it means that (Ver2.00 or later
|
|
// SD Memory Card(voltage mismatch) or Ver1.X SD Memory Card or not SD
|
|
// Memory Card)
|
|
if (interface_condition_response.is_error()) {
|
|
// TODO: This is supposed to be the "No Response" branch of the
|
|
// flowchart in Figure 4-2 of the PLSS spec
|
|
return ENOTSUP;
|
|
}
|
|
|
|
// 4. If the card responds to CMD8, but it's not a valid response then the
|
|
// card is not usable
|
|
if (interface_condition_response.value().response[0] != voltage_window) {
|
|
// FIXME: We should probably try again with a lower voltage window
|
|
return ENODEV;
|
|
}
|
|
|
|
// 5. Send ACMD41 (SEND_OP_COND) with HCS=1 to the card, repeat this until the card is ready or timeout
|
|
SD::OperatingConditionRegister ocr = {};
|
|
bool card_is_usable = true;
|
|
if (!retry_with_timeout([&]() {
|
|
if (issue_command(SD::Commands::app_cmd, 0).is_error() || wait_for_response().is_error())
|
|
return false;
|
|
|
|
if (issue_command(SD::Commands::app_send_op_cond, acmd41_arg).is_error())
|
|
return false;
|
|
|
|
if (auto acmd41_response = wait_for_response();
|
|
!acmd41_response.is_error()) {
|
|
|
|
// 20. Check if the card supports the voltage windows we requested and SDHC
|
|
u32 response = acmd41_response.value().response[0];
|
|
if ((response & acmd41_voltage) != acmd41_voltage) {
|
|
card_is_usable = false;
|
|
return false;
|
|
}
|
|
|
|
ocr.raw = acmd41_response.value().response[0];
|
|
}
|
|
|
|
return ocr.card_power_up_status == 1;
|
|
})) {
|
|
return card_is_usable ? EIO : ENODEV;
|
|
}
|
|
|
|
// 6. If you requested to switch to 1.8V, and the card accepts, execute a voltage switch sequence
|
|
// (we didn't ask it)
|
|
|
|
// 7. Send CMD2 (ALL_SEND_CID) to the card
|
|
TRY(issue_command(SD::Commands::all_send_cid, 0));
|
|
auto all_send_cid_response = TRY(wait_for_response());
|
|
auto cid = bit_cast<SD::CardIdentificationRegister>(all_send_cid_response.response);
|
|
|
|
// 8. Send CMD3 (SEND_RELATIVE_ADDR) to the card
|
|
TRY(issue_command(SD::Commands::send_relative_addr, 0));
|
|
auto send_relative_addr_response = TRY(wait_for_response());
|
|
u32 rca = send_relative_addr_response.response[0]; // FIXME: Might need to clear some bits here
|
|
|
|
// Extra steps:
|
|
|
|
TRY(issue_command(SD::Commands::send_csd, rca));
|
|
auto send_csd_response = TRY(wait_for_response());
|
|
auto csd = bit_cast<SD::CardSpecificDataRegister>(send_csd_response.response);
|
|
|
|
u32 block_count = (csd.device_size + 1) * (1 << (csd.device_size_multiplier + 2));
|
|
u32 block_size = (1 << csd.max_read_data_block_length);
|
|
u64 capacity = static_cast<u64>(block_count) * block_size;
|
|
u64 card_capacity_in_blocks = capacity / block_len;
|
|
|
|
if (m_registers->capabilities.high_speed) {
|
|
dbgln("SDHC: Enabling High Speed mode");
|
|
m_registers->host_configuration_0 = m_registers->host_configuration_0 | high_speed_enable;
|
|
TRY(sd_clock_frequency_change(max_supported_sdsc_frequency_high_speed));
|
|
} else {
|
|
TRY(sd_clock_frequency_change(max_supported_sdsc_frequency));
|
|
}
|
|
|
|
TRY(issue_command(SD::Commands::select_card, rca));
|
|
TRY(wait_for_response());
|
|
|
|
// Set block length to 512 if the card is SDSC.
|
|
// All other models only support 512 byte blocks so they don't need to be explicitly told
|
|
if (!ocr.card_capacity_status) {
|
|
TRY(issue_command(SD::Commands::set_block_len, block_len));
|
|
TRY(wait_for_response());
|
|
}
|
|
|
|
auto scr = TRY(retrieve_sd_configuration_register(rca));
|
|
|
|
// SDHC 3.4: "Changing Bus Width"
|
|
|
|
// 1. Set Card Interrupt Status Enable in the Normal Interrupt Status Enable register to 0 for
|
|
// masking incorrect interrupts that may occur while changing the bus width.
|
|
m_registers->interrupt_status_enable &= ~card_interrupt;
|
|
// 2. In case of SD memory only card, go to step (4). In case of other card, go to step (3).
|
|
// 4. Change the bus width mode for an SD card. SD Memory Card bus width is changed by ACMD6
|
|
// and SDIO card bus width is changed by setting Bus Width of Bus Interface Control register in
|
|
// CCCR.
|
|
TRY(issue_command(SD::Commands::app_cmd, rca));
|
|
TRY(wait_for_response());
|
|
TRY(issue_command(SD::Commands::app_set_bus_width, 0x2)); // 0b00=1 bit bus, 0b10=4 bit bus
|
|
TRY(wait_for_response());
|
|
// 5. In case of changing to 4-bit mode, set Data Transfer Width to 1 in the Host Control 1 register.
|
|
// In another case (1-bit mode), set this bit to 0.
|
|
m_registers->host_configuration_0 |= data_transfer_width_4bit;
|
|
// 6. In case of SD memory only card, go to the 'End'. In case of other card, go to step (7).
|
|
|
|
return TRY(Device::try_create_device<SDMemoryCard>(
|
|
*this,
|
|
StorageDevice::LUNAddress { controller_id(), 0, 0 },
|
|
hardware_relative_controller_id(), block_len,
|
|
card_capacity_in_blocks, rca, ocr, cid, scr));
|
|
}
|
|
|
|
bool SDHostController::retry_with_timeout(Function<bool()> f, i64 delay_between_tries)
|
|
{
|
|
int timeout = 1000;
|
|
bool success = false;
|
|
while (!success && timeout > 0) {
|
|
success = f();
|
|
if (!success)
|
|
delay(delay_between_tries);
|
|
timeout--;
|
|
}
|
|
return timeout > 0;
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::issue_command(SD::Command const& cmd, u32 argument)
|
|
{
|
|
// SDHC 3.7.1: "Transaction Control without Data Transfer Using DAT Line"
|
|
|
|
// 1. Check Command Inhibit (CMD) in the Present State register.
|
|
// Repeat this step until Command Inhibit (CMD) is 0.
|
|
// That is, when Command Inhibit (CMD) is 1, the Host Driver
|
|
// shall not issue an SD Command.
|
|
if (!retry_with_timeout([&]() { return !m_registers->present_state.command_inhibit_cmd; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 2. If the Host Driver issues an SD Command using DAT lines
|
|
// including busy signal, go to step (3).
|
|
// If without using DAT lines including busy signal, go to step (5).
|
|
// 3. If the Host Driver is issuing an abort command, go to step (5). In the
|
|
// case of non-abort command, go to step (4).
|
|
if (cmd.requires_dat_line() && cmd.type != SD::CommandType::Abort) {
|
|
|
|
// 4. Check Command Inhibit (DAT) in the Present State register. Repeat
|
|
// this step until Command Inhibit (DAT) is set to 0.
|
|
if (!retry_with_timeout([&]() { return !m_registers->present_state.command_inhibit_dat; })) {
|
|
return EIO;
|
|
}
|
|
}
|
|
|
|
// 5. Set registers as described in Table 1-2 except Command register.
|
|
m_registers->argument_1 = argument;
|
|
|
|
// 6. Set the Command register.
|
|
m_registers->transfer_mode_and_command = cmd.raw;
|
|
|
|
// 7. Perform Command Completion Sequence in accordance with 3.7.1.2.
|
|
// Done in wait_for_response()
|
|
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<SDHostController::Response> SDHostController::wait_for_response()
|
|
{
|
|
// SDHC 3.7.1.2 The Sequence to Finalize a Command
|
|
|
|
// 1. Wait for the Command Complete Interrupt. If the Command Complete
|
|
// Interrupt has occurred, go to step (2).
|
|
if (!retry_with_timeout(
|
|
[&]() { return m_registers->interrupt_status.command_complete; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 2. Write 1 to Command Complete in the Normal Interrupt Status register to clear this bit
|
|
m_registers->interrupt_status.raw = command_complete;
|
|
|
|
// 3. Read the Response register(s) to get the response.
|
|
// NOTE: We read fewer bits than ResponseType because the missing bits are only
|
|
// relevant for the physical layer, and the device filters them before they
|
|
// reach us
|
|
Response r = {};
|
|
auto cmd = last_sent_command();
|
|
switch (cmd.response_type) {
|
|
case SD::ResponseType::NoResponse:
|
|
break;
|
|
case SD::ResponseType::ResponseOf136Bits:
|
|
r.response[0] = m_registers->response_0;
|
|
r.response[1] = m_registers->response_1;
|
|
r.response[2] = m_registers->response_2;
|
|
r.response[3] = m_registers->response_3;
|
|
break;
|
|
case SD::ResponseType::ResponseOf48Bits:
|
|
r.response[0] = m_registers->response_0;
|
|
break;
|
|
case SD::ResponseType::ResponseOf48BitsWithBusy:
|
|
// FIXME: Idk what to do here
|
|
break;
|
|
}
|
|
|
|
// 4. Judge whether the command uses the Transfer Complete Interrupt or not.
|
|
// If it uses Transfer Complete, go to step (5). If not, go to step (7).
|
|
if (last_sent_command().uses_transfer_complete_interrupt())
|
|
TODO();
|
|
|
|
// 7. Check for errors in Response Data. If there is no error, go to step (8). If there is an error, go to step (9).
|
|
if (cmd.response_type != SD::ResponseType::ResponseOf136Bits) {
|
|
if (card_status_contains_errors(cmd, r.response[0])) {
|
|
return EIO;
|
|
}
|
|
}
|
|
|
|
// NOTE: Steps 7, 8 and 9 consist of checking the response for errors, which
|
|
// are specific to each command therefore those steps are not fully implemented
|
|
// here.
|
|
|
|
return { r };
|
|
}
|
|
|
|
bool SDHostController::is_sd_clock_enabled()
|
|
{
|
|
return m_registers->host_configuration_1 & sd_clock_enable;
|
|
}
|
|
|
|
ErrorOr<u32> SDHostController::calculate_sd_clock_divisor(u32 sd_clock_frequency, u32 frequency)
|
|
{
|
|
// SDHC 2.2.14: "Clock Control Register"
|
|
|
|
// (1) 10-bit Divisor Mode
|
|
// This mode is supported by the Host Controller Version 1.00 and 2.00.
|
|
// The frequency is not programmed directly; rather this register holds the divisor of
|
|
// the Base Clock Frequency For SD Clock in the Capabilities register. Only
|
|
// the following settings are allowed.
|
|
//
|
|
// +-----+---------------------------+
|
|
// | 80h | base clock divided by 256 |
|
|
// | 40h | base clock divided by 128 |
|
|
// | 20h | base clock divided by 64 |
|
|
// | 10h | base clock divided by 32 |
|
|
// | 08h | base clock divided by 16 |
|
|
// | 04h | base clock divided by 8 |
|
|
// | 02h | base clock divided by 4 |
|
|
// | 01h | base clock divided by 2 |
|
|
// | 00h | Base clock (10MHz-63MHz) |
|
|
// +-----+---------------------------+
|
|
//
|
|
if (host_version() == SD::HostVersion::Version2 || host_version() == SD::HostVersion::Version1) {
|
|
for (u32 divisor = 1; divisor <= 256; divisor *= 2) {
|
|
if (sd_clock_frequency / divisor <= frequency)
|
|
return divisor >> 1;
|
|
}
|
|
|
|
dmesgln("SDHostController: Could not find a suitable divisor for the requested frequency");
|
|
return ENOTSUP;
|
|
}
|
|
|
|
// (2) 10-bit Divided Clock Mode
|
|
// Host Controller Version 3.00 supports this mandatory mode instead of the
|
|
// 8-bit Divided Clock Mode. The length of divider is extended to 10 bits and all
|
|
// divider values shall be supported.
|
|
//
|
|
// +------+-------------------------------+
|
|
// | 3FFh | 1/2046 Divided Clock |
|
|
// | .... | ............................. |
|
|
// | N | 1/2N Divided Clock (Duty 50%) |
|
|
// | .... | ............................. |
|
|
// | 002h | 1/4 Divided Clock |
|
|
// | 001h | 1/2 Divided Clock |
|
|
// | 000h | Base Clock (10MHz-255MHz) |
|
|
// +------+-------------------------------+
|
|
//
|
|
if (host_version() == SD::HostVersion::Version3) {
|
|
if (frequency == sd_clock_frequency)
|
|
return 0;
|
|
|
|
auto divisor = AK::ceil_div(sd_clock_frequency, 2 * frequency);
|
|
if (divisor > 0x3ff) {
|
|
dmesgln("SDHostController: Cannot represent the divisor for the requested frequency");
|
|
return ENOTSUP;
|
|
}
|
|
|
|
return divisor;
|
|
}
|
|
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::sd_clock_supply(u32 frequency)
|
|
{
|
|
// SDHC 3.2.1: "SD Clock Supply Sequence"
|
|
// The *Clock Control* register is in the lower 16 bits of *Host Configuration 1*
|
|
VERIFY((m_registers->host_configuration_1 & sd_clock_enable) == 0);
|
|
|
|
// 1. Find out the divisor to determine the SD Clock Frequency
|
|
u32 const sd_clock_frequency = TRY(retrieve_sd_clock_frequency());
|
|
u32 divisor = TRY(calculate_sd_clock_divisor(sd_clock_frequency, frequency));
|
|
|
|
// 2. Set Internal Clock Enable and SDCLK Frequency Select in the Clock Control register
|
|
u32 const eight_lower_bits_of_sdclk_frequency_select = (divisor & 0xff) << 8;
|
|
u32 sdclk_frequency_select = eight_lower_bits_of_sdclk_frequency_select;
|
|
if (host_version() == SD::HostVersion::Version3) {
|
|
u32 const two_upper_bits_of_sdclk_frequency_select = (divisor >> 8 & 0x3) << 6;
|
|
sdclk_frequency_select |= two_upper_bits_of_sdclk_frequency_select;
|
|
}
|
|
m_registers->host_configuration_1 = (m_registers->host_configuration_1 & ~sd_clock_divisor_mask) | internal_clock_enable | sdclk_frequency_select;
|
|
|
|
// 3. Check Internal Clock Stable in the Clock Control register until it is 1
|
|
if (!retry_with_timeout([&] { return m_registers->host_configuration_1 & internal_clock_stable; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// FIXME: With the default timeout value, reading will sometimes fail on the Raspberry Pi.
|
|
// We should be a bit smarter with choosing the right timeout value and handling errors.
|
|
m_registers->host_configuration_1 = (m_registers->host_configuration_1 & ~data_timeout_counter_value_mask) | data_timeout_counter_value_max;
|
|
|
|
// 4. Set SD Clock Enable in the Clock Control register to 1
|
|
m_registers->host_configuration_1 = m_registers->host_configuration_1 | sd_clock_enable;
|
|
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::sd_clock_stop()
|
|
{
|
|
// SDHC 3.2.2: "SD Clock Stop Sequence"
|
|
|
|
// The Host Driver shall not clear SD Clock Enable while an SD transaction is executing on the SD Bus --
|
|
// namely, while either Command Inhibit (DAT) or Command Inhibit (CMD) in the Present State register
|
|
// is set to 1
|
|
if (!retry_with_timeout([&] { return !m_registers->present_state.command_inhibit_dat && !m_registers->present_state.command_inhibit_cmd; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 1. Set SD Clock Enable in the Clock Control register to 0
|
|
m_registers->host_configuration_1 = m_registers->host_configuration_1 & ~sd_clock_enable;
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::sd_clock_frequency_change(u32 new_frequency)
|
|
{
|
|
// SDHC 3.2.3: "SD Clock Frequency Change Sequence"
|
|
|
|
// 1. Execute the SD Clock Stop Sequence
|
|
TRY(sd_clock_stop());
|
|
|
|
// 2. Execute the SD Clock Supply Sequence
|
|
return sd_clock_supply(new_frequency);
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::reset_host_controller()
|
|
{
|
|
m_registers->host_configuration_0 = 0;
|
|
m_registers->host_configuration_1 = m_registers->host_configuration_1 | software_reset_for_all;
|
|
if (!retry_with_timeout(
|
|
[&] {
|
|
return (m_registers->host_configuration_1 & software_reset_for_all) == 0;
|
|
})) {
|
|
return EIO;
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Command const& command,
|
|
u32 argument,
|
|
u32 block_count,
|
|
u32 block_size,
|
|
UserOrKernelBuffer buf,
|
|
DataTransferType data_transfer_type)
|
|
{
|
|
// SDHC 3.7.2: "Transaction Control with Data Transfer Using DAT Line (without DMA)"
|
|
|
|
// 1. Set the value corresponding to the executed data byte length of one block to Block Size register.
|
|
// 2. Set the value corresponding to the executed data block count to Block Count register in accordance with Table 2-8.
|
|
m_registers->block_size_and_block_count = (block_count << 16) | block_size;
|
|
|
|
// 3. Set the argument value to Argument 1 register.
|
|
m_registers->argument_1 = argument;
|
|
|
|
// 4. Set the value to the Transfer Mode register. The host driver
|
|
// determines Multi / Single Block
|
|
// Select, Block Count Enable, Data Transfer Direction, Auto CMD12 Enable
|
|
// and DMA Enable. Multi / Single Block Select and Block Count Enable are
|
|
// determined according to Table 2-8. (NOTE: We assume `cmd` already has
|
|
// the correct flags set)
|
|
// 5. Set the value to Command register.
|
|
m_registers->transfer_mode_and_command = command.raw;
|
|
|
|
// 6. Then, wait for the Command Complete Interrupt.
|
|
if (!retry_with_timeout([&]() { return m_registers->interrupt_status.command_complete; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 7. Write 1 to the Command Complete in the Normal Interrupt Status
|
|
// register for clearing this bit.
|
|
m_registers->interrupt_status.raw = command_complete;
|
|
|
|
// 8. Read Response register and get necessary information of the issued
|
|
// command
|
|
// (FIXME: Return the value for better error handling)
|
|
|
|
// 9. In the case where this sequence is for write to a card, go to step
|
|
// (10).
|
|
// In case of read from a card, go to step (14).
|
|
if (data_transfer_type == DataTransferType::Write) {
|
|
|
|
for (u32 i = 0; i < block_count; i++) {
|
|
// 10. Then wait for Buffer Write Ready Interrupt.
|
|
if (!retry_with_timeout(
|
|
[&]() {
|
|
return m_registers->interrupt_status.buffer_write_ready;
|
|
})) {
|
|
return EIO;
|
|
}
|
|
|
|
// 11. Write 1 to the Buffer Write Ready in the Normal Interrupt Status register for clearing this bit.
|
|
m_registers->interrupt_status.raw = buffer_write_ready;
|
|
|
|
// 12. Write block data (in according to the number of bytes specified at the step (1)) to Buffer Data Port register.
|
|
u32 temp;
|
|
for (u32 j = 0; j < block_size / sizeof(u32); j++) {
|
|
TRY(buf.read(&temp, i * block_size + sizeof(u32) * j, sizeof(u32)));
|
|
m_registers->buffer_data_port = temp;
|
|
}
|
|
|
|
// 13. Repeat until all blocks are sent and then go to step (18).
|
|
}
|
|
} else {
|
|
for (u32 i = 0; i < block_count; i++) {
|
|
// 14. Then wait for the Buffer Read Ready Interrupt.
|
|
if (!retry_with_timeout([&]() { return m_registers->interrupt_status.buffer_read_ready; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 15. Write 1 to the Buffer Read Ready in the Normal Interrupt Status
|
|
// register for clearing this bit.
|
|
m_registers->interrupt_status.raw = buffer_read_ready;
|
|
|
|
// 16. Read block data (in according to the number of bytes specified at
|
|
// the step (1)) from the Buffer Data Port register
|
|
u32 temp;
|
|
for (u32 j = 0; j < block_size / sizeof(u32); j++) {
|
|
temp = m_registers->buffer_data_port;
|
|
TRY(buf.write(&temp, i * block_size + sizeof(u32) * j, sizeof(u32)));
|
|
}
|
|
|
|
// 17. Repeat until all blocks are received and then go to step (18).
|
|
}
|
|
}
|
|
|
|
// 18. If this sequence is for Single or Multiple Block Transfer, go to step
|
|
// (19). In case of Infinite Block Transfer, go to step (21)
|
|
|
|
// 19. Wait for Transfer Complete Interrupt.
|
|
if (!retry_with_timeout(
|
|
[&]() { return m_registers->interrupt_status.transfer_complete; })) {
|
|
return EIO;
|
|
}
|
|
|
|
// 20. Write 1 to the Transfer Complete in the Normal Interrupt Status
|
|
// register for clearing this bit
|
|
m_registers->interrupt_status.raw = transfer_complete;
|
|
return {};
|
|
}
|
|
|
|
u32 SDHostController::make_adma_descriptor_table(u32 block_count)
|
|
{
|
|
// FIXME: We might be able to write to the destination buffer directly
|
|
// Especially with 64 bit addressing enabled
|
|
// This might cost us more descriptor entries but avoids the memcpy at the end
|
|
// of each read cycle
|
|
|
|
FlatPtr adma_descriptor_physical = m_dma_region->physical_page(0)->paddr().get();
|
|
FlatPtr adma_dma_region_physical = adma_descriptor_physical + PAGE_SIZE;
|
|
|
|
FlatPtr adma_descriptor_virtual = m_dma_region->vaddr().get();
|
|
|
|
u32 offset = 0;
|
|
u32 blocks_transferred = 0;
|
|
u32 blocks_per_descriptor = (1 << 16) / block_len;
|
|
|
|
using enum OperatingMode;
|
|
switch (m_mode) {
|
|
case ADMA2_32: {
|
|
u32 i = 0;
|
|
Array<SD::DMADescriptor64, 64>& command_buffer = *bit_cast<Array<SD::DMADescriptor64, 64>*>(adma_descriptor_virtual);
|
|
for (; i < 64; ++i) {
|
|
FlatPtr physical_transfer_address = adma_dma_region_physical + offset;
|
|
VERIFY(physical_transfer_address >> 32 == 0);
|
|
// If the remaining block count is less than the maximum addressable blocks
|
|
// we need to set the actual length and break out of the loop
|
|
if (block_count - blocks_transferred < blocks_per_descriptor) {
|
|
u32 blocks_to_transfer = block_count - blocks_transferred;
|
|
command_buffer[i] = SD::DMADescriptor64 {
|
|
.valid = 1,
|
|
.end = 1,
|
|
.interrupt = 0,
|
|
.action = SD::DMAAction::Tran,
|
|
.length_upper = 0,
|
|
.length_lower = static_cast<u32>(blocks_to_transfer * block_len),
|
|
.address = static_cast<u32>(physical_transfer_address),
|
|
};
|
|
blocks_transferred += blocks_to_transfer;
|
|
offset += static_cast<size_t>(blocks_to_transfer) * block_len;
|
|
break;
|
|
}
|
|
|
|
command_buffer[i] = SD::DMADescriptor64 {
|
|
.valid = 1,
|
|
.end = 0,
|
|
.interrupt = 0,
|
|
.action = SD::DMAAction::Tran,
|
|
.length_upper = 0,
|
|
.length_lower = 0, // length of 0 means 1<<16 bytes
|
|
.address = static_cast<u32>(physical_transfer_address),
|
|
};
|
|
|
|
blocks_transferred += blocks_per_descriptor;
|
|
offset += (1 << 16);
|
|
}
|
|
command_buffer[min(i, 63)].end = 1;
|
|
break;
|
|
}
|
|
case ADMA2_64: {
|
|
u32 i = 0;
|
|
Array<SD::DMADescriptor128, 32>& command_buffer = *bit_cast<Array<SD::DMADescriptor128, 32>*>(adma_descriptor_virtual);
|
|
for (; i < 32; ++i) {
|
|
FlatPtr physical_transfer_address = adma_dma_region_physical + offset;
|
|
VERIFY(physical_transfer_address >> 32 == 0);
|
|
// If the remaining block count is less than the maximum addressable blocks
|
|
// we need to set the actual length and break out of the loop
|
|
if (block_count - blocks_transferred < blocks_per_descriptor) {
|
|
u32 blocks_to_read = block_count - blocks_transferred;
|
|
command_buffer[i] = SD::DMADescriptor128 {
|
|
.valid = 1,
|
|
.end = 1,
|
|
.interrupt = 0,
|
|
.action = SD::DMAAction::Tran,
|
|
.length_upper = 0,
|
|
.length_lower = static_cast<u32>(blocks_to_read * block_len),
|
|
.address_low = static_cast<u32>((physical_transfer_address + offset) & 0xFFFF'FFFF),
|
|
.address_high = static_cast<u32>((physical_transfer_address + offset) >> 32),
|
|
};
|
|
blocks_transferred += blocks_to_read;
|
|
offset += static_cast<size_t>(blocks_to_read) * block_len;
|
|
break;
|
|
}
|
|
|
|
command_buffer[i] = SD::DMADescriptor128 {
|
|
.valid = 1,
|
|
.end = 0,
|
|
.interrupt = 0,
|
|
.action = SD::DMAAction::Tran,
|
|
.length_upper = 0,
|
|
.length_lower = 0, // length of 0 means 1<<16 bytes
|
|
.address_low = static_cast<u32>((physical_transfer_address + offset) & 0xFFFF'FFFF),
|
|
.address_high = static_cast<u32>((physical_transfer_address + offset) >> 32),
|
|
};
|
|
|
|
blocks_transferred += blocks_per_descriptor;
|
|
offset += (1 << 16);
|
|
}
|
|
command_buffer[min(i, 31)].end = 1;
|
|
break;
|
|
}
|
|
case PIO:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
return blocks_transferred;
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::transfer_blocks_adma2(u32 block_address, u32 block_count, UserOrKernelBuffer out, SD::DataTransferDirection direction)
|
|
{
|
|
using enum OperatingMode;
|
|
|
|
FlatPtr adma_descriptor_physical = m_dma_region->physical_page(0)->paddr().get();
|
|
|
|
FlatPtr adma_descriptor_virtual = m_dma_region->vaddr().get();
|
|
FlatPtr adma_dma_region_virtual = adma_descriptor_virtual + PAGE_SIZE;
|
|
|
|
AK::ArmedScopeGuard abort_guard {
|
|
[] {
|
|
dbgln("Aborting SDHC ADMA read");
|
|
TODO();
|
|
}
|
|
};
|
|
|
|
// 3.7.2.3 Using ADMA
|
|
u32 blocks_per_descriptor = (1 << 16) / block_len;
|
|
u32 addressable_blocks_per_transfer = blocks_per_descriptor * (m_mode == ADMA2_32 ? 64 : 32);
|
|
size_t host_offset = 0;
|
|
size_t card_offset = 0;
|
|
u32 blocks_transferred_total = 0;
|
|
|
|
while (blocks_transferred_total < block_count) {
|
|
// When writing to the card we must prime the transfer buffer with the data we want to write
|
|
// FIXME: We might be able to transfer to/from the destination/origin buffer directly
|
|
// Especially with 64 bit addressing enabled
|
|
// This might cost us more descriptor entries, when the physical range is segmented,
|
|
// but avoids the memcpy at the end of each transfer cycle
|
|
if (direction == SD::DataTransferDirection::HostToCard)
|
|
TRY(out.read(bit_cast<void*>(adma_dma_region_virtual), host_offset, min(block_count - blocks_transferred_total, addressable_blocks_per_transfer) * block_len));
|
|
|
|
// (1) Create Descriptor table for ADMA in the system memory
|
|
u32 blocks_transferred = make_adma_descriptor_table(block_count);
|
|
card_offset += blocks_transferred * block_len;
|
|
|
|
// (2) Set the Descriptor address for ADMA in the ADMA System Address register.
|
|
m_registers->adma_system_address[0] = static_cast<u32>(adma_descriptor_physical & 0xFFFF'FFFF);
|
|
if (m_mode == ADMA2_64)
|
|
m_registers->adma_system_address[1] = static_cast<u32>(adma_descriptor_physical >> 32);
|
|
|
|
// (3) Set the value corresponding to the executed data byte length of one block in the Block Size
|
|
// register.
|
|
// (4) Set the value corresponding to the executed data block count in the Block Count register in
|
|
// accordance with Table 2-9. Refer to Section 1.15 for more details.
|
|
// Note: To avoid the restriction of the 16 bit block count we disable the block counter
|
|
// and do not set the block count, resulting in an "Infinite Transfer" (SDHC Table 2-9)
|
|
// ADMA has its own way of encoding block counts and to signal transfer termination
|
|
m_registers->block_size_and_block_count = block_len;
|
|
|
|
// (5) Set the argument value to the Argument register.
|
|
m_registers->argument_1 = block_address;
|
|
|
|
// (6) Set the value to the Transfer Mode register. The Host Driver determines Multi / Single Block
|
|
// Select, Block Count Enable, Data Transfer Direction, Auto CMD12 Enable and DMA
|
|
// Enable. Multi / Single Block Select and Block Count Enable are determined according to
|
|
// Table 2-9.
|
|
// If response check is enabled (Response Error Check Enable =1), set Response Interrupt
|
|
// Disable to 1 and select Response Type R1 / R5
|
|
SD::Command command = {
|
|
.dma_enable = 1,
|
|
.block_counter = 0,
|
|
.auto_command = blocks_transferred > 1 ? SD::SendAutoCommand::Command12 : SD::SendAutoCommand::Disabled,
|
|
.direction = direction,
|
|
.multiblock = blocks_transferred > 1,
|
|
.response_type_r1r5 = 0,
|
|
.response_error_check = 0,
|
|
.response_interrupt_disable = 0,
|
|
.reserved1 = 0,
|
|
.response_type = SD::ResponseType::ResponseOf48Bits,
|
|
.sub_command_flag = 0,
|
|
.crc_enable = 1,
|
|
.idx_enable = 0,
|
|
.is_data = 1,
|
|
.type = SD::CommandType::Normal,
|
|
.index = direction == SD::DataTransferDirection::HostToCard ? (blocks_transferred > 1 ? SD::CommandIndex::WriteMultipleBlock : SD::CommandIndex::WriteSingleBlock)
|
|
: (blocks_transferred > 1 ? SD::CommandIndex::ReadMultipleBlock : SD::CommandIndex::ReadSingleBlock),
|
|
.reserved3 = 0
|
|
};
|
|
|
|
// (7) Set the value to the Command register.
|
|
// Note: When writing to the upper byte [3] of the Command register, the SD command is issued
|
|
// and DMA is started.
|
|
m_registers->transfer_mode_and_command = command.raw;
|
|
|
|
// (8) If response check is enabled, go to stop (11) else wait for the Command Complete Interrupt.
|
|
// Note: We never enabled response checking
|
|
if (!retry_with_timeout([this]() { return m_registers->interrupt_status.command_complete; })) {
|
|
dbgln("SDHC: ADMA2 command response timed out");
|
|
}
|
|
// (9) Write 1 to the Command Complete in the Normal Interrupt Status register to clear this bit.
|
|
// Note: We cannot write to the nit field member directly, due to that also possibly
|
|
// setting the already completed `transfer_complete` flag, making the next check time out.
|
|
m_registers->interrupt_status.raw = command_complete;
|
|
// TODO: (10) Read Response register and get necessary information of the issued command
|
|
|
|
// (11) Wait for the Transfer Complete Interrupt and ADMA Error Interrupt.
|
|
// FIXME: Especially with big transfers this might timeout before the transfer is finished, although
|
|
// No error has has happened
|
|
// We should set this up so that it actually waits for the interrupts via a designated handler
|
|
// Note, that the SDHC has a way to detect transfer timeouts on its own
|
|
if (!retry_with_timeout([this]() { return m_registers->interrupt_status.transfer_complete || m_registers->interrupt_status.adma_error; })) {
|
|
dbgln("SDHC: ADMA2 transfer timed out");
|
|
return EIO;
|
|
}
|
|
// (12) If Transfer Complete is set to 1, go to Step (13)
|
|
if (m_registers->interrupt_status.transfer_complete) {
|
|
// (13) Write 1 to the Transfer Complete Status in the Normal Interrupt Status register to clear this bit.
|
|
m_registers->interrupt_status.transfer_complete = 1;
|
|
}
|
|
// else if ADMA Error Interrupt is set to 1, go to Step (14).
|
|
else if (m_registers->interrupt_status.adma_error) {
|
|
// (14) Write 1 to the ADMA Error Interrupt Status in the Error Interrupt Status register to clear this bit.
|
|
m_registers->interrupt_status.adma_error = 1;
|
|
// (15) Abort ADMA operation. SD card operation should be stopped by issuing abort command. If
|
|
// necessary, the Host Driver checks ADMA Error Status register to detect why ADMA error is
|
|
// generated
|
|
dmesgln("SDHC transfer failed, ADMA Error Status: {:2b}", AK::to_underlying(m_registers->adma_error_status.state));
|
|
// The scope guard will handle the Abort
|
|
return EIO;
|
|
} else {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// Copy the read data to the correct memory location
|
|
// FIXME: As described above, we may be able to target the destination buffer directly
|
|
if (direction == SD::DataTransferDirection::CardToHost)
|
|
TRY(out.write(bit_cast<void const*>(adma_dma_region_virtual), host_offset, blocks_transferred * block_len));
|
|
|
|
blocks_transferred_total += blocks_transferred;
|
|
host_offset = card_offset;
|
|
block_address += card_offset;
|
|
card_offset = 0;
|
|
}
|
|
|
|
abort_guard.disarm();
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::read_block(Badge<SDMemoryCard>, u32 block_address, u32 block_count, UserOrKernelBuffer out)
|
|
{
|
|
VERIFY(is_card_inserted());
|
|
|
|
using enum OperatingMode;
|
|
switch (m_mode) {
|
|
case OperatingMode::ADMA2_32:
|
|
case OperatingMode::ADMA2_64:
|
|
return transfer_blocks_adma2(block_address, block_count, out, SD::DataTransferDirection::CardToHost);
|
|
case PIO: {
|
|
if (block_count > 1) {
|
|
return transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Commands::read_multiple_block,
|
|
block_address,
|
|
block_count,
|
|
block_len,
|
|
out,
|
|
DataTransferType::Read);
|
|
}
|
|
|
|
return transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Commands::read_single_block,
|
|
block_address,
|
|
block_count,
|
|
block_len,
|
|
out,
|
|
DataTransferType::Read);
|
|
}
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
ErrorOr<void> SDHostController::write_block(Badge<SDMemoryCard>, u32 block_address, u32 block_count, UserOrKernelBuffer in)
|
|
{
|
|
VERIFY(is_card_inserted());
|
|
using enum OperatingMode;
|
|
switch (m_mode) {
|
|
case OperatingMode::ADMA2_32:
|
|
case OperatingMode::ADMA2_64:
|
|
return transfer_blocks_adma2(block_address, block_count, in, SD::DataTransferDirection::HostToCard);
|
|
case PIO: {
|
|
if (block_count > 1) {
|
|
return transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Commands::write_multiple_block,
|
|
block_address,
|
|
block_count,
|
|
block_len,
|
|
in,
|
|
DataTransferType::Write);
|
|
}
|
|
return transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Commands::write_single_block,
|
|
block_address,
|
|
block_count,
|
|
block_len,
|
|
in,
|
|
DataTransferType::Write);
|
|
}
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
};
|
|
}
|
|
|
|
ErrorOr<SD::SDConfigurationRegister> SDHostController::retrieve_sd_configuration_register(u32 relative_card_address)
|
|
{
|
|
SD::SDConfigurationRegister scr;
|
|
|
|
TRY(issue_command(SD::Commands::app_cmd, relative_card_address));
|
|
TRY(wait_for_response());
|
|
TRY(transaction_control_with_data_transfer_using_the_dat_line_without_dma(
|
|
SD::Commands::app_send_scr,
|
|
0, 1, 8,
|
|
UserOrKernelBuffer::for_kernel_buffer(scr.raw), DataTransferType::Read));
|
|
|
|
return scr;
|
|
}
|
|
|
|
ErrorOr<u32> SDHostController::retrieve_sd_clock_frequency()
|
|
{
|
|
if (m_registers->capabilities.base_clock_frequency == 0) {
|
|
// Spec says:
|
|
// If these bits are all 0, the Host System has to get information via another method
|
|
TODO();
|
|
}
|
|
i64 const one_mhz = 1'000'000;
|
|
return { m_registers->capabilities.base_clock_frequency * one_mhz };
|
|
}
|
|
|
|
// PLSS Table 4-43 : Card Status Field/Command
|
|
bool SDHostController::card_status_contains_errors(SD::Command const& command, u32 resp)
|
|
{
|
|
SD::CardStatus status;
|
|
// PLSS 4.9.5 R6
|
|
if (command.index == SD::CommandIndex::SendRelativeAddr) {
|
|
status.raw = (resp & 0x1fff) | ((resp & 0x2000) << 6) | ((resp & 0x4000) << 8) | ((resp & 0x8000) << 8);
|
|
} else {
|
|
status.raw = resp;
|
|
}
|
|
|
|
bool common_errors = status.error || status.cc_error || status.card_ecc_failed || status.illegal_command || status.com_crc_error || status.lock_unlock_failed || status.card_is_locked || status.wp_violation || status.erase_param || status.csd_overwrite;
|
|
|
|
bool contains_errors = false;
|
|
switch (command.index) {
|
|
case SD::CommandIndex::SendRelativeAddr:
|
|
if (status.error || status.illegal_command || status.com_crc_error) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::SelectCard:
|
|
if (common_errors) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::SetBlockLen:
|
|
if (common_errors || status.block_len_error) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::ReadSingleBlock:
|
|
case SD::CommandIndex::ReadMultipleBlock:
|
|
if (common_errors || status.address_error || status.out_of_range) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::WriteSingleBlock:
|
|
case SD::CommandIndex::WriteMultipleBlock:
|
|
if (common_errors || status.block_len_error || status.address_error || status.out_of_range) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::AppSendScr:
|
|
if (common_errors) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
case SD::CommandIndex::AppCmd:
|
|
if (common_errors) {
|
|
contains_errors = true;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return contains_errors;
|
|
}
|
|
|
|
}
|