serenity/Kernel/FileSystem/Inode.cpp
Liav A 7c0540a229 Everywhere: Move global Kernel pattern code to Kernel/Library directory
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.

Also, move the panic and assertions handling code to that directory.
2023-06-04 21:32:34 +02:00

422 lines
13 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, sin-ack <sin-ack@protonmail.com>
* Copyright (c) 2022, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <Kernel/API/InodeWatcherEvent.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/FileSystem/InodeWatcher.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Library/KBufferBuilder.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Net/LocalSocket.h>
#include <Kernel/Tasks/Process.h>
namespace Kernel {
static Singleton<SpinlockProtected<Inode::AllInstancesList, LockRank::None>> s_all_instances;
SpinlockProtected<Inode::AllInstancesList, LockRank::None>& Inode::all_instances()
{
return s_all_instances;
}
void Inode::sync_all()
{
Vector<NonnullRefPtr<Inode>, 32> inodes;
Inode::all_instances().with([&](auto& all_inodes) {
for (auto& inode : all_inodes) {
if (inode.is_metadata_dirty())
inodes.append(inode);
}
});
for (auto& inode : inodes) {
VERIFY(inode->is_metadata_dirty());
(void)inode->flush_metadata();
}
}
void Inode::sync()
{
if (is_metadata_dirty())
(void)flush_metadata();
fs().flush_writes();
}
ErrorOr<NonnullRefPtr<Custody>> Inode::resolve_as_link(Credentials const& credentials, Custody& base, RefPtr<Custody>* out_parent, int options, int symlink_recursion_level) const
{
// The default implementation simply treats the stored
// contents as a path and resolves that. That is, it
// behaves exactly how you would expect a symlink to work.
// Make sure that our assumptions about the path length hold up.
// Note that this doesn't mean that the reported size can be trusted, some inodes just report zero.
VERIFY(size() <= MAXPATHLEN);
Array<u8, MAXPATHLEN> contents;
auto read_bytes = TRY(read_until_filled_or_end(0, contents.size(), UserOrKernelBuffer::for_kernel_buffer(contents.data()), nullptr));
return VirtualFileSystem::the().resolve_path(credentials, StringView { contents.span().trim(read_bytes) }, base, out_parent, options, symlink_recursion_level);
}
Inode::Inode(FileSystem& fs, InodeIndex index)
: m_file_system(fs)
, m_index(index)
{
Inode::all_instances().with([&](auto& all_inodes) { all_inodes.append(*this); });
}
Inode::~Inode()
{
m_watchers.for_each([&](auto& watcher) {
watcher->unregister_by_inode({}, identifier());
});
}
void Inode::will_be_destroyed()
{
MutexLocker locker(m_inode_lock);
if (m_metadata_dirty)
(void)flush_metadata();
}
ErrorOr<size_t> Inode::write_bytes(off_t offset, size_t length, UserOrKernelBuffer const& target_buffer, OpenFileDescription* open_description)
{
MutexLocker locker(m_inode_lock);
TRY(prepare_to_write_data());
return write_bytes_locked(offset, length, target_buffer, open_description);
}
ErrorOr<size_t> Inode::read_bytes(off_t offset, size_t length, UserOrKernelBuffer& buffer, OpenFileDescription* open_description) const
{
MutexLocker locker(m_inode_lock, Mutex::Mode::Shared);
return read_bytes_locked(offset, length, buffer, open_description);
}
ErrorOr<size_t> Inode::read_until_filled_or_end(off_t offset, size_t length, UserOrKernelBuffer buffer, OpenFileDescription* open_description) const
{
auto remaining_length = length;
while (remaining_length > 0) {
auto filled_bytes = TRY(read_bytes(offset, remaining_length, buffer, open_description));
if (filled_bytes == 0)
break;
offset += filled_bytes;
remaining_length -= filled_bytes;
}
return length - remaining_length;
}
ErrorOr<void> Inode::update_timestamps([[maybe_unused]] Optional<UnixDateTime> atime, [[maybe_unused]] Optional<UnixDateTime> ctime, [[maybe_unused]] Optional<UnixDateTime> mtime)
{
return ENOTIMPL;
}
ErrorOr<void> Inode::increment_link_count()
{
return ENOTIMPL;
}
ErrorOr<void> Inode::decrement_link_count()
{
return ENOTIMPL;
}
ErrorOr<void> Inode::set_shared_vmobject(Memory::SharedInodeVMObject& vmobject)
{
MutexLocker locker(m_inode_lock);
m_shared_vmobject = TRY(vmobject.try_make_weak_ptr<Memory::SharedInodeVMObject>());
return {};
}
LockRefPtr<LocalSocket> Inode::bound_socket() const
{
return m_bound_socket.strong_ref();
}
bool Inode::bind_socket(LocalSocket& socket)
{
MutexLocker locker(m_inode_lock);
if (m_bound_socket)
return false;
m_bound_socket = socket;
return true;
}
bool Inode::unbind_socket()
{
MutexLocker locker(m_inode_lock);
if (!m_bound_socket)
return false;
m_bound_socket = nullptr;
return true;
}
ErrorOr<void> Inode::register_watcher(Badge<InodeWatcher>, InodeWatcher& watcher)
{
return m_watchers.with([&](auto& watchers) -> ErrorOr<void> {
VERIFY(!watchers.contains(&watcher));
TRY(watchers.try_set(&watcher));
return {};
});
}
void Inode::unregister_watcher(Badge<InodeWatcher>, InodeWatcher& watcher)
{
m_watchers.with([&](auto& watchers) {
VERIFY(watchers.contains(&watcher));
watchers.remove(&watcher);
});
}
ErrorOr<NonnullRefPtr<FIFO>> Inode::fifo()
{
MutexLocker locker(m_inode_lock);
VERIFY(metadata().is_fifo());
// FIXME: Release m_fifo when it is closed by all readers and writers
if (!m_fifo)
m_fifo = TRY(FIFO::try_create(metadata().uid));
return NonnullRefPtr { *m_fifo };
}
void Inode::set_metadata_dirty(bool metadata_dirty)
{
MutexLocker locker(m_inode_lock);
if (metadata_dirty) {
// Sanity check.
VERIFY(!fs().is_readonly());
}
if (m_metadata_dirty == metadata_dirty)
return;
m_metadata_dirty = metadata_dirty;
if (m_metadata_dirty) {
// FIXME: Maybe we should hook into modification events somewhere else, I'm not sure where.
// We don't always end up on this particular code path, for instance when writing to an ext2fs file.
m_watchers.for_each([&](auto& watcher) {
watcher->notify_inode_event({}, identifier(), InodeWatcherEvent::Type::MetadataModified);
});
}
}
void Inode::did_add_child(InodeIdentifier, StringView name)
{
m_watchers.for_each([&](auto& watcher) {
watcher->notify_inode_event({}, identifier(), InodeWatcherEvent::Type::ChildCreated, name);
});
}
void Inode::did_remove_child(InodeIdentifier, StringView name)
{
if (name == "." || name == "..") {
// These are just aliases and are not interesting to userspace.
return;
}
m_watchers.for_each([&](auto& watcher) {
watcher->notify_inode_event({}, identifier(), InodeWatcherEvent::Type::ChildDeleted, name);
});
}
void Inode::did_modify_contents()
{
// FIXME: What happens if this fails?
// ENOTIMPL would be a meaningless error to return here
auto now = kgettimeofday();
(void)update_timestamps({}, now, now);
m_watchers.for_each([&](auto& watcher) {
watcher->notify_inode_event({}, identifier(), InodeWatcherEvent::Type::ContentModified);
});
}
void Inode::did_delete_self()
{
m_watchers.for_each([&](auto& watcher) {
watcher->notify_inode_event({}, identifier(), InodeWatcherEvent::Type::Deleted);
});
}
ErrorOr<void> Inode::prepare_to_write_data()
{
VERIFY(m_inode_lock.is_locked());
if (fs().is_readonly())
return EROFS;
auto metadata = this->metadata();
if (metadata.is_setuid() || metadata.is_setgid()) {
dbgln("Inode::prepare_to_write_data(): Stripping SUID/SGID bits from {}", identifier());
return chmod(metadata.mode & ~(04000 | 02000));
}
return {};
}
LockRefPtr<Memory::SharedInodeVMObject> Inode::shared_vmobject() const
{
MutexLocker locker(m_inode_lock);
return m_shared_vmobject.strong_ref();
}
template<typename T>
static inline bool range_overlap(T start1, T len1, T start2, T len2)
{
return ((start1 < start2 + len2) || len2 == 0) && ((start2 < start1 + len1) || len1 == 0);
}
static inline ErrorOr<void> normalize_flock(OpenFileDescription const& description, flock& lock)
{
off_t start;
switch (lock.l_whence) {
case SEEK_SET:
start = lock.l_start;
break;
case SEEK_CUR:
start = description.offset() + lock.l_start;
break;
case SEEK_END:
// FIXME: Implement SEEK_END and negative lengths.
return ENOTSUP;
default:
return EINVAL;
}
lock = { lock.l_type, SEEK_SET, start, lock.l_len, 0 };
return {};
}
bool Inode::can_apply_flock(flock const& new_lock, Optional<OpenFileDescription const&> description) const
{
VERIFY(new_lock.l_whence == SEEK_SET);
if (new_lock.l_type == F_UNLCK)
return true;
return m_flocks.with([&](auto& flocks) {
for (auto const& lock : flocks) {
if (!range_overlap(lock.start, lock.len, new_lock.l_start, new_lock.l_len))
continue;
// There are two cases where we can attempt downgrade:
//
// 1) We're the owner of this lock. The downgrade will immediately
// succeed.
// 2) We're not the owner of this lock. Our downgrade attempt will
// fail, and the thread will start blocking on an FlockBlocker.
//
// For the first case, we get the description from try_apply_flock
// below. For the second case, the check below would always be
// false, so there is no need to store the description in the
// blocker in the first place.
if (new_lock.l_type == F_RDLCK && lock.type == F_WRLCK)
return description.has_value() && lock.owner == &description.value() && lock.start == new_lock.l_start && lock.len == new_lock.l_len;
if (new_lock.l_type == F_WRLCK)
return false;
}
return true;
});
}
ErrorOr<bool> Inode::try_apply_flock(Process const& process, OpenFileDescription const& description, flock const& new_lock)
{
return m_flocks.with([&](auto& flocks) -> ErrorOr<bool> {
if (!can_apply_flock(new_lock, description))
return false;
bool did_manipulate_lock = false;
for (size_t i = 0; i < flocks.size(); ++i) {
auto const& lock = flocks[i];
bool is_potential_downgrade = new_lock.l_type == F_RDLCK && lock.type == F_WRLCK;
bool is_potential_unlock = new_lock.l_type == F_UNLCK;
bool is_lock_owner = &description == lock.owner;
bool lock_range_exactly_matches = lock.start == new_lock.l_start && lock.len == new_lock.l_len;
bool can_manage_this_lock = is_lock_owner && lock_range_exactly_matches;
if ((is_potential_downgrade || is_potential_unlock) && can_manage_this_lock) {
flocks.remove(i);
did_manipulate_lock = true;
break;
}
}
if (new_lock.l_type != F_UNLCK)
TRY(flocks.try_append(Flock { new_lock.l_start, new_lock.l_len, &description, process.pid().value(), new_lock.l_type }));
if (did_manipulate_lock)
m_flock_blocker_set.unblock_all_blockers_whose_conditions_are_met();
// Judging by the Linux implementation, unlocking a non-existent lock
// also works.
return true;
});
}
ErrorOr<void> Inode::apply_flock(Process const& process, OpenFileDescription const& description, Userspace<flock const*> input_lock, ShouldBlock should_block)
{
auto new_lock = TRY(copy_typed_from_user(input_lock));
TRY(normalize_flock(description, new_lock));
while (true) {
auto success = TRY(try_apply_flock(process, description, new_lock));
if (success)
return {};
if (should_block == ShouldBlock::No)
return EAGAIN;
if (Thread::current()->block<Thread::FlockBlocker>({}, *this, new_lock).was_interrupted())
return EINTR;
}
}
ErrorOr<void> Inode::get_flock(OpenFileDescription const& description, Userspace<flock*> reference_lock) const
{
flock lookup = {};
TRY(copy_from_user(&lookup, reference_lock));
TRY(normalize_flock(description, lookup));
return m_flocks.with([&](auto& flocks) {
for (auto const& lock : flocks) {
if (!range_overlap(lock.start, lock.len, lookup.l_start, lookup.l_len))
continue;
// Locks with the same owner can't conflict with each other.
if (lock.pid == Process::current().pid())
continue;
if ((lookup.l_type == F_RDLCK && lock.type == F_WRLCK) || lookup.l_type == F_WRLCK) {
lookup = { lock.type, SEEK_SET, lock.start, lock.len, lock.pid };
return copy_to_user(reference_lock, &lookup);
}
}
lookup.l_type = F_UNLCK;
return copy_to_user(reference_lock, &lookup);
});
}
void Inode::remove_flocks_for_description(OpenFileDescription const& description)
{
m_flocks.with([&](auto& flocks) {
flocks.remove_all_matching([&](auto& entry) { return entry.owner == &description; });
});
}
bool Inode::has_watchers() const
{
return !m_watchers.with([&](auto& watchers) { return watchers.is_empty(); });
}
}