mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-24 10:22:05 -05:00
2d35810e0a
Hide the implementation of time-of-day computation in TimeManagement.
678 lines
21 KiB
C++
678 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/QuickSort.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <Kernel/FileSystem/FileDescription.h>
|
|
#include <Kernel/Net/Socket.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Profiling.h>
|
|
#include <Kernel/RTC.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/TimerQueue.h>
|
|
|
|
//#define LOG_EVERY_CONTEXT_SWITCH
|
|
//#define SCHEDULER_DEBUG
|
|
//#define SCHEDULER_RUNNABLE_DEBUG
|
|
|
|
namespace Kernel {
|
|
|
|
SchedulerData* g_scheduler_data;
|
|
timeval g_timeofday;
|
|
|
|
void Scheduler::init_thread(Thread& thread)
|
|
{
|
|
g_scheduler_data->m_nonrunnable_threads.append(thread);
|
|
}
|
|
|
|
void Scheduler::update_state_for_thread(Thread& thread)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
auto& list = g_scheduler_data->thread_list_for_state(thread.state());
|
|
|
|
if (list.contains(thread))
|
|
return;
|
|
|
|
list.append(thread);
|
|
}
|
|
|
|
static u32 time_slice_for(const Thread& thread)
|
|
{
|
|
// One time slice unit == 1ms
|
|
if (&thread == g_colonel)
|
|
return 1;
|
|
return 10;
|
|
}
|
|
|
|
timeval Scheduler::time_since_boot()
|
|
{
|
|
return { TimeManagement::the().seconds_since_boot(), (suseconds_t)TimeManagement::the().ticks_this_second() * 1000 };
|
|
}
|
|
|
|
Thread* g_finalizer;
|
|
Thread* g_colonel;
|
|
WaitQueue* g_finalizer_wait_queue;
|
|
bool g_finalizer_has_work;
|
|
static Process* s_colonel_process;
|
|
u64 g_uptime;
|
|
|
|
struct TaskRedirectionData {
|
|
u16 selector;
|
|
TSS32 tss;
|
|
};
|
|
static TaskRedirectionData s_redirection;
|
|
static bool s_active;
|
|
|
|
bool Scheduler::is_active()
|
|
{
|
|
return s_active;
|
|
}
|
|
|
|
Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
|
|
: m_joinee(joinee)
|
|
, m_joinee_exit_value(joinee_exit_value)
|
|
{
|
|
ASSERT(m_joinee.m_joiner == nullptr);
|
|
m_joinee.m_joiner = Thread::current;
|
|
Thread::current->m_joinee = &joinee;
|
|
}
|
|
|
|
bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
|
|
{
|
|
return !joiner.m_joinee;
|
|
}
|
|
|
|
Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
|
|
: m_blocked_description(description)
|
|
{
|
|
}
|
|
|
|
const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
|
|
{
|
|
return m_blocked_description;
|
|
}
|
|
|
|
Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
|
|
: FileDescriptionBlocker(description)
|
|
{
|
|
}
|
|
|
|
bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
|
|
{
|
|
auto& socket = *blocked_description().socket();
|
|
return socket.can_accept();
|
|
}
|
|
|
|
Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
|
|
: FileDescriptionBlocker(description)
|
|
{
|
|
}
|
|
|
|
bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
|
|
{
|
|
auto& socket = *blocked_description().socket();
|
|
return socket.setup_state() == Socket::SetupState::Completed;
|
|
}
|
|
|
|
Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
|
|
: FileDescriptionBlocker(description)
|
|
{
|
|
if (description.is_socket()) {
|
|
auto& socket = *description.socket();
|
|
if (socket.has_send_timeout()) {
|
|
timeval deadline = Scheduler::time_since_boot();
|
|
deadline.tv_sec += socket.send_timeout().tv_sec;
|
|
deadline.tv_usec += socket.send_timeout().tv_usec;
|
|
deadline.tv_sec += (socket.send_timeout().tv_usec / 1000000) * 1;
|
|
deadline.tv_usec %= 1000000;
|
|
m_deadline = deadline;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Thread::WriteBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
|
|
{
|
|
if (m_deadline.has_value()) {
|
|
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
|
|
return timed_out || blocked_description().can_write();
|
|
}
|
|
return blocked_description().can_write();
|
|
}
|
|
|
|
Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
|
|
: FileDescriptionBlocker(description)
|
|
{
|
|
if (description.is_socket()) {
|
|
auto& socket = *description.socket();
|
|
if (socket.has_receive_timeout()) {
|
|
timeval deadline = Scheduler::time_since_boot();
|
|
deadline.tv_sec += socket.receive_timeout().tv_sec;
|
|
deadline.tv_usec += socket.receive_timeout().tv_usec;
|
|
deadline.tv_sec += (socket.receive_timeout().tv_usec / 1000000) * 1;
|
|
deadline.tv_usec %= 1000000;
|
|
m_deadline = deadline;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Thread::ReadBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
|
|
{
|
|
if (m_deadline.has_value()) {
|
|
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
|
|
return timed_out || blocked_description().can_read();
|
|
}
|
|
return blocked_description().can_read();
|
|
}
|
|
|
|
Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
|
|
: m_block_until_condition(move(condition))
|
|
, m_state_string(state_string)
|
|
{
|
|
ASSERT(m_block_until_condition);
|
|
}
|
|
|
|
bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
|
|
{
|
|
return m_block_until_condition();
|
|
}
|
|
|
|
Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
|
|
: m_wakeup_time(wakeup_time)
|
|
{
|
|
}
|
|
|
|
bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
|
|
{
|
|
return m_wakeup_time <= g_uptime;
|
|
}
|
|
|
|
Thread::SelectBlocker::SelectBlocker(const timeval& tv, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
|
|
: m_select_timeout(tv)
|
|
, m_select_has_timeout(select_has_timeout)
|
|
, m_select_read_fds(read_fds)
|
|
, m_select_write_fds(write_fds)
|
|
, m_select_exceptional_fds(except_fds)
|
|
{
|
|
}
|
|
|
|
bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
|
|
{
|
|
if (m_select_has_timeout) {
|
|
if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec >= m_select_timeout.tv_usec))
|
|
return true;
|
|
}
|
|
|
|
auto& process = thread.process();
|
|
for (int fd : m_select_read_fds) {
|
|
if (!process.m_fds[fd])
|
|
continue;
|
|
if (process.m_fds[fd].description->can_read())
|
|
return true;
|
|
}
|
|
for (int fd : m_select_write_fds) {
|
|
if (!process.m_fds[fd])
|
|
continue;
|
|
if (process.m_fds[fd].description->can_write())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
|
|
: m_wait_options(wait_options)
|
|
, m_waitee_pid(waitee_pid)
|
|
{
|
|
}
|
|
|
|
bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
|
|
{
|
|
bool should_unblock = false;
|
|
if (m_waitee_pid != -1) {
|
|
auto* peer = Process::from_pid(m_waitee_pid);
|
|
if (!peer)
|
|
return true;
|
|
}
|
|
thread.process().for_each_child([&](Process& child) {
|
|
if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
|
|
return IterationDecision::Continue;
|
|
|
|
bool child_exited = child.is_dead();
|
|
bool child_stopped = false;
|
|
if (child.thread_count()) {
|
|
auto& child_thread = child.any_thread();
|
|
if (child_thread.state() == Thread::State::Stopped && !child_thread.has_pending_signal(SIGCONT))
|
|
child_stopped = true;
|
|
}
|
|
|
|
bool wait_finished = ((m_wait_options & WEXITED) && child_exited)
|
|
|| ((m_wait_options & WSTOPPED) && child_stopped);
|
|
|
|
if (!wait_finished)
|
|
return IterationDecision::Continue;
|
|
|
|
m_waitee_pid = child.pid();
|
|
should_unblock = true;
|
|
return IterationDecision::Break;
|
|
});
|
|
return should_unblock;
|
|
}
|
|
|
|
Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
|
|
: m_reason(reason)
|
|
{
|
|
}
|
|
|
|
bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
|
|
{
|
|
// someone else has to unblock us
|
|
return false;
|
|
}
|
|
|
|
// Called by the scheduler on threads that are blocked for some reason.
|
|
// Make a decision as to whether to unblock them or not.
|
|
void Thread::consider_unblock(time_t now_sec, long now_usec)
|
|
{
|
|
switch (state()) {
|
|
case Thread::Invalid:
|
|
case Thread::Runnable:
|
|
case Thread::Running:
|
|
case Thread::Dead:
|
|
case Thread::Stopped:
|
|
case Thread::Queued:
|
|
case Thread::Dying:
|
|
/* don't know, don't care */
|
|
return;
|
|
case Thread::Blocked:
|
|
ASSERT(m_blocker != nullptr);
|
|
if (m_blocker->should_unblock(*this, now_sec, now_usec))
|
|
unblock();
|
|
return;
|
|
case Thread::Skip1SchedulerPass:
|
|
set_state(Thread::Skip0SchedulerPasses);
|
|
return;
|
|
case Thread::Skip0SchedulerPasses:
|
|
set_state(Thread::Runnable);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool Scheduler::pick_next()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(!s_active);
|
|
|
|
TemporaryChange<bool> change(s_active, true);
|
|
|
|
ASSERT(s_active);
|
|
|
|
if (!Thread::current) {
|
|
// XXX: The first ever context_switch() goes to the idle process.
|
|
// This to setup a reliable place we can return to.
|
|
return context_switch(*g_colonel);
|
|
}
|
|
|
|
auto now = time_since_boot();
|
|
|
|
auto now_sec = now.tv_sec;
|
|
auto now_usec = now.tv_usec;
|
|
|
|
// Check and unblock threads whose wait conditions have been met.
|
|
Scheduler::for_each_nonrunnable([&](Thread& thread) {
|
|
thread.consider_unblock(now_sec, now_usec);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
Process::for_each([&](Process& process) {
|
|
if (process.is_dead()) {
|
|
if (Process::current->pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
|
|
auto name = process.name();
|
|
auto pid = process.pid();
|
|
auto exit_status = Process::reap(process);
|
|
dbg() << "Scheduler: Reaped unparented process " << name << "(" << pid << "), exit status: " << exit_status.si_status;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
|
|
process.m_alarm_deadline = 0;
|
|
process.send_signal(SIGALRM, nullptr);
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
// Dispatch any pending signals.
|
|
Thread::for_each_living([](Thread& thread) -> IterationDecision {
|
|
if (!thread.has_unmasked_pending_signals())
|
|
return IterationDecision::Continue;
|
|
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
|
|
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
|
|
// while some other process is interrupted. Otherwise a mess will be made.
|
|
if (&thread == Thread::current)
|
|
return IterationDecision::Continue;
|
|
// We know how to interrupt blocked processes, but if they are just executing
|
|
// at some random point in the kernel, let them continue.
|
|
// Before returning to userspace from a syscall, we will block a thread if it has any
|
|
// pending unmasked signals, allowing it to be dispatched then.
|
|
if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
|
|
return IterationDecision::Continue;
|
|
// NOTE: dispatch_one_pending_signal() may unblock the process.
|
|
bool was_blocked = thread.is_blocked();
|
|
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
|
|
return IterationDecision::Continue;
|
|
if (was_blocked) {
|
|
dbg() << "Unblock " << thread << " due to signal";
|
|
ASSERT(thread.m_blocker != nullptr);
|
|
thread.m_blocker->set_interrupted_by_signal();
|
|
thread.unblock();
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
#ifdef SCHEDULER_RUNNABLE_DEBUG
|
|
dbg() << "Non-runnables:";
|
|
Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
|
|
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
dbg() << "Runnables:";
|
|
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
|
|
dbg() << " " << String::format("%3u", thread.effective_priority()) << "/" << String::format("%2u", thread.priority()) << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
|
|
return IterationDecision::Continue;
|
|
});
|
|
#endif
|
|
|
|
Vector<Thread*, 128> sorted_runnables;
|
|
for_each_runnable([&sorted_runnables](auto& thread) {
|
|
sorted_runnables.append(&thread);
|
|
return IterationDecision::Continue;
|
|
});
|
|
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
|
|
|
|
Thread* thread_to_schedule = nullptr;
|
|
|
|
for (auto* thread : sorted_runnables) {
|
|
if (thread->process().is_being_inspected())
|
|
continue;
|
|
|
|
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
|
|
continue;
|
|
|
|
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
|
|
|
|
if (!thread_to_schedule) {
|
|
thread->m_extra_priority = 0;
|
|
thread_to_schedule = thread;
|
|
} else {
|
|
thread->m_extra_priority++;
|
|
}
|
|
}
|
|
|
|
if (!thread_to_schedule)
|
|
thread_to_schedule = g_colonel;
|
|
|
|
#ifdef SCHEDULER_DEBUG
|
|
dbg() << "Scheduler: Switch to " << *thread_to_schedule << " @ " << String::format("%04x:%08x", thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
|
|
#endif
|
|
|
|
return context_switch(*thread_to_schedule);
|
|
}
|
|
|
|
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
|
|
{
|
|
InterruptDisabler disabler;
|
|
if (!Thread::is_thread(beneficiary))
|
|
return false;
|
|
|
|
(void)reason;
|
|
unsigned ticks_left = Thread::current->ticks_left();
|
|
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
|
|
return yield();
|
|
|
|
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
|
|
#ifdef SCHEDULER_DEBUG
|
|
dbg() << "Scheduler: Donating " << ticks_to_donate << " ticks to " << *beneficiary << ", reason=" << reason;
|
|
#endif
|
|
context_switch(*beneficiary);
|
|
beneficiary->set_ticks_left(ticks_to_donate);
|
|
switch_now();
|
|
return false;
|
|
}
|
|
|
|
bool Scheduler::yield()
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(Thread::current);
|
|
if (!pick_next())
|
|
return false;
|
|
switch_now();
|
|
return true;
|
|
}
|
|
|
|
void Scheduler::pick_next_and_switch_now()
|
|
{
|
|
bool someone_wants_to_run = pick_next();
|
|
ASSERT(someone_wants_to_run);
|
|
switch_now();
|
|
}
|
|
|
|
void Scheduler::switch_now()
|
|
{
|
|
Descriptor& descriptor = get_gdt_entry(Thread::current->selector());
|
|
descriptor.type = 9;
|
|
asm("sti\n"
|
|
"ljmp *(%%eax)\n" ::"a"(&Thread::current->far_ptr()));
|
|
}
|
|
|
|
bool Scheduler::context_switch(Thread& thread)
|
|
{
|
|
thread.set_ticks_left(time_slice_for(thread));
|
|
thread.did_schedule();
|
|
|
|
if (Thread::current == &thread)
|
|
return false;
|
|
|
|
if (Thread::current) {
|
|
// If the last process hasn't blocked (still marked as running),
|
|
// mark it as runnable for the next round.
|
|
if (Thread::current->state() == Thread::Running)
|
|
Thread::current->set_state(Thread::Runnable);
|
|
|
|
asm volatile("fxsave %0"
|
|
: "=m"(Thread::current->fpu_state()));
|
|
|
|
#ifdef LOG_EVERY_CONTEXT_SWITCH
|
|
dbg() << "Scheduler: " << *Thread::current << " -> " << thread << " [" << thread.priority() << "] " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
|
|
#endif
|
|
}
|
|
|
|
Thread::current = &thread;
|
|
Process::current = &thread.process();
|
|
|
|
thread.set_state(Thread::Running);
|
|
|
|
asm volatile("fxrstor %0" ::"m"(Thread::current->fpu_state()));
|
|
|
|
if (!thread.selector()) {
|
|
thread.set_selector(gdt_alloc_entry());
|
|
auto& descriptor = get_gdt_entry(thread.selector());
|
|
descriptor.set_base(&thread.tss());
|
|
descriptor.set_limit(sizeof(TSS32));
|
|
descriptor.dpl = 0;
|
|
descriptor.segment_present = 1;
|
|
descriptor.granularity = 0;
|
|
descriptor.zero = 0;
|
|
descriptor.operation_size = 1;
|
|
descriptor.descriptor_type = 0;
|
|
}
|
|
|
|
if (!thread.thread_specific_data().is_null()) {
|
|
auto& descriptor = thread_specific_descriptor();
|
|
descriptor.set_base(thread.thread_specific_data().as_ptr());
|
|
descriptor.set_limit(sizeof(ThreadSpecificData*));
|
|
}
|
|
|
|
auto& descriptor = get_gdt_entry(thread.selector());
|
|
descriptor.type = 11; // Busy TSS
|
|
return true;
|
|
}
|
|
|
|
static void initialize_redirection()
|
|
{
|
|
auto& descriptor = get_gdt_entry(s_redirection.selector);
|
|
descriptor.set_base(&s_redirection.tss);
|
|
descriptor.set_limit(sizeof(TSS32));
|
|
descriptor.dpl = 0;
|
|
descriptor.segment_present = 1;
|
|
descriptor.granularity = 0;
|
|
descriptor.zero = 0;
|
|
descriptor.operation_size = 1;
|
|
descriptor.descriptor_type = 0;
|
|
descriptor.type = 9;
|
|
flush_gdt();
|
|
}
|
|
|
|
void Scheduler::prepare_for_iret_to_new_process()
|
|
{
|
|
auto& descriptor = get_gdt_entry(s_redirection.selector);
|
|
descriptor.type = 9;
|
|
s_redirection.tss.backlink = Thread::current->selector();
|
|
load_task_register(s_redirection.selector);
|
|
}
|
|
|
|
void Scheduler::prepare_to_modify_tss(Thread& thread)
|
|
{
|
|
// This ensures that a currently running process modifying its own TSS
|
|
// in order to yield() and end up somewhere else doesn't just end up
|
|
// right after the yield().
|
|
if (Thread::current == &thread)
|
|
load_task_register(s_redirection.selector);
|
|
}
|
|
|
|
Process* Scheduler::colonel()
|
|
{
|
|
return s_colonel_process;
|
|
}
|
|
|
|
void Scheduler::initialize()
|
|
{
|
|
g_scheduler_data = new SchedulerData;
|
|
g_finalizer_wait_queue = new WaitQueue;
|
|
g_finalizer_has_work = false;
|
|
s_redirection.selector = gdt_alloc_entry();
|
|
initialize_redirection();
|
|
s_colonel_process = Process::create_kernel_process(g_colonel, "colonel", nullptr);
|
|
g_colonel->set_priority(THREAD_PRIORITY_MIN);
|
|
load_task_register(s_redirection.selector);
|
|
}
|
|
|
|
void Scheduler::timer_tick(const RegisterState& regs)
|
|
{
|
|
if (!Thread::current)
|
|
return;
|
|
|
|
++g_uptime;
|
|
|
|
g_timeofday = TimeManagement::now_as_timeval();
|
|
|
|
if (Process::current->is_profiling()) {
|
|
SmapDisabler disabler;
|
|
auto backtrace = Thread::current->raw_backtrace(regs.ebp, regs.eip);
|
|
auto& sample = Profiling::next_sample_slot();
|
|
sample.pid = Process::current->pid();
|
|
sample.tid = Thread::current->tid();
|
|
sample.timestamp = g_uptime;
|
|
for (size_t i = 0; i < min(backtrace.size(), Profiling::max_stack_frame_count); ++i) {
|
|
sample.frames[i] = backtrace[i];
|
|
}
|
|
}
|
|
|
|
TimerQueue::the().fire();
|
|
|
|
if (Thread::current->tick())
|
|
return;
|
|
|
|
auto& outgoing_tss = Thread::current->tss();
|
|
|
|
if (!pick_next())
|
|
return;
|
|
|
|
outgoing_tss.gs = regs.gs;
|
|
outgoing_tss.fs = regs.fs;
|
|
outgoing_tss.es = regs.es;
|
|
outgoing_tss.ds = regs.ds;
|
|
outgoing_tss.edi = regs.edi;
|
|
outgoing_tss.esi = regs.esi;
|
|
outgoing_tss.ebp = regs.ebp;
|
|
outgoing_tss.ebx = regs.ebx;
|
|
outgoing_tss.edx = regs.edx;
|
|
outgoing_tss.ecx = regs.ecx;
|
|
outgoing_tss.eax = regs.eax;
|
|
outgoing_tss.eip = regs.eip;
|
|
outgoing_tss.cs = regs.cs;
|
|
outgoing_tss.eflags = regs.eflags;
|
|
|
|
// Compute process stack pointer.
|
|
// Add 16 for CS, EIP, EFLAGS, exception code (interrupt mechanic)
|
|
outgoing_tss.esp = regs.esp + 16;
|
|
outgoing_tss.ss = regs.ss;
|
|
|
|
if ((outgoing_tss.cs & 3) != 0) {
|
|
outgoing_tss.ss = regs.userspace_ss;
|
|
outgoing_tss.esp = regs.userspace_esp;
|
|
}
|
|
prepare_for_iret_to_new_process();
|
|
|
|
// Set the NT (nested task) flag.
|
|
asm(
|
|
"pushf\n"
|
|
"orl $0x00004000, (%esp)\n"
|
|
"popf\n");
|
|
}
|
|
|
|
static bool s_should_stop_idling = false;
|
|
|
|
void Scheduler::stop_idling()
|
|
{
|
|
if (Thread::current != g_colonel)
|
|
return;
|
|
|
|
s_should_stop_idling = true;
|
|
}
|
|
|
|
void Scheduler::idle_loop()
|
|
{
|
|
for (;;) {
|
|
asm("hlt");
|
|
if (s_should_stop_idling) {
|
|
s_should_stop_idling = false;
|
|
yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|