serenity/Tests/AK/TestIntrusiveRedBlackTree.cpp
2023-03-06 23:46:35 +01:00

193 lines
4.9 KiB
C++

/*
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibTest/TestCase.h>
#include <AK/IntrusiveRedBlackTree.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/Random.h>
#include <AK/Vector.h>
class IntrusiveTest {
public:
IntrusiveTest(int value)
: m_some_value(value)
{
}
IntrusiveRedBlackTreeNode<int, IntrusiveTest, RawPtr<IntrusiveTest>> m_tree_node;
int m_some_value;
};
using IntrusiveRBTree = IntrusiveRedBlackTree<&IntrusiveTest::m_tree_node>;
TEST_CASE(construct)
{
IntrusiveRBTree empty;
EXPECT(empty.is_empty());
EXPECT(empty.size() == 0);
}
TEST_CASE(ints)
{
IntrusiveRBTree test;
IntrusiveTest first { 10 };
test.insert(1, first);
IntrusiveTest second { 20 };
test.insert(3, second);
IntrusiveTest third { 30 };
test.insert(2, third);
EXPECT_EQ(test.size(), 3u);
EXPECT_EQ(test.find(3)->m_some_value, 20);
EXPECT_EQ(test.find(2)->m_some_value, 30);
EXPECT_EQ(test.find(1)->m_some_value, 10);
EXPECT(!test.remove(4));
EXPECT(test.remove(2));
EXPECT(test.remove(1));
EXPECT(test.remove(3));
EXPECT_EQ(test.size(), 0u);
}
TEST_CASE(largest_smaller_than)
{
IntrusiveRBTree test;
IntrusiveTest first { 10 };
test.insert(1, first);
IntrusiveTest second { 20 };
test.insert(11, second);
IntrusiveTest third { 30 };
test.insert(21, third);
EXPECT_EQ(test.size(), 3u);
EXPECT_EQ(test.find_largest_not_above(3)->m_some_value, 10);
EXPECT_EQ(test.find_largest_not_above(17)->m_some_value, 20);
EXPECT_EQ(test.find_largest_not_above(22)->m_some_value, 30);
EXPECT_EQ(test.find_largest_not_above(-5), nullptr);
VERIFY(test.remove(1));
VERIFY(test.remove(11));
VERIFY(test.remove(21));
}
TEST_CASE(key_ordered_iteration)
{
constexpr auto amount = 10000;
IntrusiveRBTree test;
Vector<NonnullOwnPtr<IntrusiveTest>> m_entries;
Array<int, amount> keys {};
// generate random key order
for (int i = 0; i < amount; i++) {
keys[i] = i;
}
for (size_t i = 0; i < amount; i++) {
swap(keys[i], keys[get_random<size_t>() % amount]);
}
// insert random keys
for (size_t i = 0; i < amount; i++) {
auto entry = make<IntrusiveTest>(keys[i]);
test.insert(keys[i], *entry);
m_entries.append(move(entry));
}
// check key-ordered iteration
int index = 0;
for (auto& value : test) {
EXPECT(value.m_some_value == index++);
}
// ensure we can remove all of them (aka, tree structure is not destroyed somehow)
for (size_t i = 0; i < amount; i++) {
EXPECT(test.remove(i));
}
}
TEST_CASE(clear)
{
IntrusiveRBTree test;
Vector<NonnullOwnPtr<IntrusiveTest>> m_entries;
for (size_t i = 0; i < 1000; i++) {
auto entry = make<IntrusiveTest>(i);
test.insert(i, *entry);
m_entries.append(move(entry));
}
test.clear();
EXPECT_EQ(test.size(), 0u);
}
class IntrusiveRefPtrTest : public RefCounted<IntrusiveRefPtrTest> {
public:
IntrusiveRefPtrTest()
{
}
IntrusiveRedBlackTreeNode<int, IntrusiveRefPtrTest, RefPtr<IntrusiveRefPtrTest>> m_tree_node;
};
using IntrusiveRefPtrRBTree = IntrusiveRedBlackTree<&IntrusiveRefPtrTest::m_tree_node>;
TEST_CASE(intrusive_ref_ptr_no_ref_leaks)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest());
EXPECT_EQ(1u, item->ref_count());
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(0, *item);
EXPECT_EQ(2u, item->ref_count());
ref_tree.remove(0);
EXPECT_EQ(1u, item->ref_count());
}
TEST_CASE(intrusive_ref_ptr_clear)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest());
EXPECT_EQ(1u, item->ref_count());
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(0, *item);
EXPECT_EQ(2u, item->ref_count());
ref_tree.clear();
EXPECT_EQ(1u, item->ref_count());
}
TEST_CASE(intrusive_ref_ptr_destructor)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest());
EXPECT_EQ(1u, item->ref_count());
{
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(0, *item);
EXPECT_EQ(2u, item->ref_count());
}
EXPECT_EQ(1u, item->ref_count());
}
class IntrusiveNonnullRefPtrTest : public RefCounted<IntrusiveNonnullRefPtrTest> {
public:
IntrusiveNonnullRefPtrTest()
{
}
IntrusiveRedBlackTreeNode<int, IntrusiveNonnullRefPtrTest, NonnullRefPtr<IntrusiveNonnullRefPtrTest>> m_tree_node;
};
using IntrusiveNonnullRefPtrRBTree = IntrusiveRedBlackTree<&IntrusiveNonnullRefPtrTest::m_tree_node>;
TEST_CASE(intrusive_nonnull_ref_ptr_intrusive)
{
auto item = adopt_ref(*new IntrusiveNonnullRefPtrTest());
EXPECT_EQ(1u, item->ref_count());
IntrusiveNonnullRefPtrRBTree nonnull_ref_tree;
nonnull_ref_tree.insert(0, *item);
EXPECT_EQ(2u, item->ref_count());
EXPECT(!nonnull_ref_tree.is_empty());
nonnull_ref_tree.remove(0);
EXPECT_EQ(1u, item->ref_count());
EXPECT(nonnull_ref_tree.is_empty());
}