serenity/Kernel/Storage/NVMe/NVMeQueue.cpp
2022-12-03 23:52:23 +00:00

175 lines
6.7 KiB
C++

/*
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/Delay.h>
#include <Kernel/StdLib.h>
#include <Kernel/Storage/NVMe/NVMeController.h>
#include <Kernel/Storage/NVMe/NVMeInterruptQueue.h>
#include <Kernel/Storage/NVMe/NVMePollQueue.h>
#include <Kernel/Storage/NVMe/NVMeQueue.h>
namespace Kernel {
ErrorOr<NonnullLockRefPtr<NVMeQueue>> NVMeQueue::try_create(u16 qid, Optional<u8> irq, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_page, OwnPtr<Memory::Region> sq_dma_region, NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_page, Memory::TypedMapping<DoorbellRegister volatile> db_regs)
{
// Note: Allocate DMA region for RW operation. For now the requests don't exceed more than 4096 bytes (Storage device takes care of it)
RefPtr<Memory::PhysicalPage> rw_dma_page;
auto rw_dma_region = TRY(MM.allocate_dma_buffer_page("NVMe Queue Read/Write DMA"sv, Memory::Region::Access::ReadWrite, rw_dma_page));
if (!irq.has_value()) {
auto queue = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) NVMePollQueue(move(rw_dma_region), *rw_dma_page, qid, q_depth, move(cq_dma_region), cq_dma_page, move(sq_dma_region), sq_dma_page, move(db_regs))));
return queue;
}
auto queue = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) NVMeInterruptQueue(move(rw_dma_region), *rw_dma_page, qid, irq.value(), q_depth, move(cq_dma_region), cq_dma_page, move(sq_dma_region), sq_dma_page, move(db_regs))));
return queue;
}
UNMAP_AFTER_INIT NVMeQueue::NVMeQueue(NonnullOwnPtr<Memory::Region> rw_dma_region, Memory::PhysicalPage const& rw_dma_page, u16 qid, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_page, OwnPtr<Memory::Region> sq_dma_region, NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_page, Memory::TypedMapping<DoorbellRegister volatile> db_regs)
: m_current_request(nullptr)
, m_rw_dma_region(move(rw_dma_region))
, m_qid(qid)
, m_admin_queue(qid == 0)
, m_qdepth(q_depth)
, m_cq_dma_region(move(cq_dma_region))
, m_cq_dma_page(cq_dma_page)
, m_sq_dma_region(move(sq_dma_region))
, m_sq_dma_page(sq_dma_page)
, m_db_regs(move(db_regs))
, m_rw_dma_page(rw_dma_page)
{
m_sqe_array = { reinterpret_cast<NVMeSubmission*>(m_sq_dma_region->vaddr().as_ptr()), m_qdepth };
m_cqe_array = { reinterpret_cast<NVMeCompletion*>(m_cq_dma_region->vaddr().as_ptr()), m_qdepth };
}
bool NVMeQueue::cqe_available()
{
return PHASE_TAG(m_cqe_array[m_cq_head].status) == m_cq_valid_phase;
}
void NVMeQueue::update_cqe_head()
{
// To prevent overflow, use a temp variable
u32 temp_cq_head = m_cq_head + 1;
if (temp_cq_head == m_qdepth) {
m_cq_head = 0;
m_cq_valid_phase ^= 1;
} else {
m_cq_head = temp_cq_head;
}
}
u32 NVMeQueue::process_cq()
{
u32 nr_of_processed_cqes = 0;
while (cqe_available()) {
u16 status;
u16 cmdid;
++nr_of_processed_cqes;
status = CQ_STATUS_FIELD(m_cqe_array[m_cq_head].status);
cmdid = m_cqe_array[m_cq_head].command_id;
dbgln_if(NVME_DEBUG, "NVMe: Completion with status {:x} and command identifier {}. CQ_HEAD: {}", status, cmdid, m_cq_head);
// TODO: We don't use AsyncBlockDevice requests for admin queue as it is only applicable for a block device (NVMe namespace)
// But admin commands precedes namespace creation. Unify requests to avoid special conditions
if (m_admin_queue == false) {
// As the block layer calls are now sync (as we wait on each requests),
// everything is operated on a single request similar to BMIDE driver.
// TODO: Remove this constraint eventually.
VERIFY(cmdid == m_prev_sq_tail);
if (m_current_request) {
complete_current_request(status);
}
}
update_cqe_head();
}
if (nr_of_processed_cqes) {
update_cq_doorbell();
}
return nr_of_processed_cqes;
}
void NVMeQueue::submit_sqe(NVMeSubmission& sub)
{
SpinlockLocker lock(m_sq_lock);
// For now let's use sq tail as a unique command id.
sub.cmdid = m_sq_tail;
m_prev_sq_tail = m_sq_tail;
memcpy(&m_sqe_array[m_sq_tail], &sub, sizeof(NVMeSubmission));
{
u32 temp_sq_tail = m_sq_tail + 1;
if (temp_sq_tail == m_qdepth)
m_sq_tail = 0;
else
m_sq_tail = temp_sq_tail;
}
dbgln_if(NVME_DEBUG, "NVMe: Submission with command identifier {}. SQ_TAIL: {}", sub.cmdid, m_sq_tail);
full_memory_barrier();
update_sq_doorbell();
}
u16 NVMeQueue::submit_sync_sqe(NVMeSubmission& sub)
{
// For now let's use sq tail as a unique command id.
u16 cqe_cid;
u16 cid = m_sq_tail;
submit_sqe(sub);
do {
int index;
{
SpinlockLocker lock(m_cq_lock);
index = m_cq_head - 1;
if (index < 0)
index = m_qdepth - 1;
}
cqe_cid = m_cqe_array[index].command_id;
microseconds_delay(1);
} while (cid != cqe_cid);
auto status = CQ_STATUS_FIELD(m_cqe_array[m_cq_head].status);
return status;
}
void NVMeQueue::read(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
{
NVMeSubmission sub {};
SpinlockLocker m_lock(m_request_lock);
m_current_request = request;
sub.op = OP_NVME_READ;
sub.rw.nsid = nsid;
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
// No. of lbas is 0 based
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
full_memory_barrier();
submit_sqe(sub);
}
void NVMeQueue::write(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
{
NVMeSubmission sub {};
SpinlockLocker m_lock(m_request_lock);
m_current_request = request;
if (auto result = m_current_request->read_from_buffer(m_current_request->buffer(), m_rw_dma_region->vaddr().as_ptr(), m_current_request->buffer_size()); result.is_error()) {
complete_current_request(AsyncDeviceRequest::MemoryFault);
return;
}
sub.op = OP_NVME_WRITE;
sub.rw.nsid = nsid;
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
// No. of lbas is 0 based
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
full_memory_barrier();
submit_sqe(sub);
}
UNMAP_AFTER_INIT NVMeQueue::~NVMeQueue() = default;
}