serenity/AK/IntrusiveList.h
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

309 lines
8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
namespace AK {
class IntrusiveListNode;
class IntrusiveListStorage {
private:
friend class IntrusiveListNode;
template<class T, IntrusiveListNode T::*member>
friend class IntrusiveList;
IntrusiveListNode* m_first { nullptr };
IntrusiveListNode* m_last { nullptr };
};
template<class T, IntrusiveListNode T::*member>
class IntrusiveList {
public:
IntrusiveList();
~IntrusiveList();
void clear();
bool is_empty() const;
void append(T& n);
void prepend(T& n);
void remove(T& n);
bool contains(const T&) const;
T* first() const;
T* last() const;
T* take_first();
T* take_last();
class Iterator {
public:
Iterator();
Iterator(T* value);
T& operator*() const;
T* operator->() const;
bool operator==(const Iterator& other) const;
bool operator!=(const Iterator& other) const { return !(*this == other); }
Iterator& operator++();
Iterator& erase();
private:
T* m_value { nullptr };
};
Iterator begin();
Iterator end();
private:
static T* next(T* current);
static T* node_to_value(IntrusiveListNode& node);
IntrusiveListStorage m_storage;
};
class IntrusiveListNode {
public:
~IntrusiveListNode();
void remove();
bool is_in_list() const;
private:
template<class T, IntrusiveListNode T::*member>
friend class IntrusiveList;
IntrusiveListStorage* m_storage = nullptr;
IntrusiveListNode* m_next = nullptr;
IntrusiveListNode* m_prev = nullptr;
};
template<class T, IntrusiveListNode T::*member>
inline IntrusiveList<T, member>::Iterator::Iterator()
{
}
template<class T, IntrusiveListNode T::*member>
inline IntrusiveList<T, member>::Iterator::Iterator(T* value)
: m_value(value)
{
}
template<class T, IntrusiveListNode T::*member>
inline T& IntrusiveList<T, member>::Iterator::operator*() const
{
return *m_value;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::Iterator::operator->() const
{
return m_value;
}
template<class T, IntrusiveListNode T::*member>
inline bool IntrusiveList<T, member>::Iterator::operator==(const Iterator& other) const
{
return other.m_value == m_value;
}
template<class T, IntrusiveListNode T::*member>
inline typename IntrusiveList<T, member>::Iterator& IntrusiveList<T, member>::Iterator::operator++()
{
m_value = IntrusiveList<T, member>::next(m_value);
return *this;
}
template<class T, IntrusiveListNode T::*member>
inline typename IntrusiveList<T, member>::Iterator& IntrusiveList<T, member>::Iterator::erase()
{
T* old = m_value;
m_value = IntrusiveList<T, member>::next(m_value);
(old->*member).remove();
return *this;
}
template<class T, IntrusiveListNode T::*member>
inline IntrusiveList<T, member>::IntrusiveList()
{
}
template<class T, IntrusiveListNode T::*member>
inline IntrusiveList<T, member>::~IntrusiveList()
{
clear();
}
template<class T, IntrusiveListNode T::*member>
inline void IntrusiveList<T, member>::clear()
{
while (m_storage.m_first)
m_storage.m_first->remove();
}
template<class T, IntrusiveListNode T::*member>
inline bool IntrusiveList<T, member>::is_empty() const
{
return m_storage.m_first == nullptr;
}
template<class T, IntrusiveListNode T::*member>
inline void IntrusiveList<T, member>::append(T& n)
{
auto& nnode = n.*member;
if (nnode.m_storage)
nnode.remove();
nnode.m_storage = &m_storage;
nnode.m_prev = m_storage.m_last;
nnode.m_next = nullptr;
if (m_storage.m_last)
m_storage.m_last->m_next = &nnode;
m_storage.m_last = &nnode;
if (!m_storage.m_first)
m_storage.m_first = &nnode;
}
template<class T, IntrusiveListNode T::*member>
inline void IntrusiveList<T, member>::prepend(T& n)
{
auto& nnode = n.*member;
if (nnode.m_storage)
nnode.remove();
nnode.m_storage = &m_storage;
nnode.m_prev = nullptr;
nnode.m_next = m_storage.m_first;
if (m_storage.m_first)
m_storage.m_first->m_prev = &nnode;
m_storage.m_first = &nnode;
if (!m_storage.m_last)
m_storage.m_last = &nnode;
}
template<class T, IntrusiveListNode T::*member>
inline void IntrusiveList<T, member>::remove(T& n)
{
auto& nnode = n.*member;
if (nnode.m_storage)
nnode.remove();
}
template<class T, IntrusiveListNode T::*member>
inline bool IntrusiveList<T, member>::contains(const T& n) const
{
auto& nnode = n.*member;
return nnode.m_storage == &m_storage;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::first() const
{
return m_storage.m_first ? node_to_value(*m_storage.m_first) : nullptr;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::take_first()
{
if (auto* ptr = first()) {
remove(*ptr);
return ptr;
}
return nullptr;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::take_last()
{
if (auto* ptr = last()) {
remove(*ptr);
return ptr;
}
return nullptr;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::last() const
{
return m_storage.m_last ? node_to_value(*m_storage.m_last) : nullptr;
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::next(T* current)
{
auto& nextnode = (current->*member).m_next;
T* nextstruct = nextnode ? node_to_value(*nextnode) : nullptr;
return nextstruct;
}
template<class T, IntrusiveListNode T::*member>
inline typename IntrusiveList<T, member>::Iterator IntrusiveList<T, member>::begin()
{
return m_storage.m_first ? Iterator(node_to_value(*m_storage.m_first)) : Iterator();
}
template<class T, IntrusiveListNode T::*member>
inline typename IntrusiveList<T, member>::Iterator IntrusiveList<T, member>::end()
{
return Iterator();
}
template<class T, IntrusiveListNode T::*member>
inline T* IntrusiveList<T, member>::node_to_value(IntrusiveListNode& node)
{
return (T*)((char*)&node - ((char*)&(((T*)nullptr)->*member) - (char*)nullptr));
}
inline IntrusiveListNode::~IntrusiveListNode()
{
if (m_storage)
remove();
}
inline void IntrusiveListNode::remove()
{
VERIFY(m_storage);
if (m_storage->m_first == this)
m_storage->m_first = m_next;
if (m_storage->m_last == this)
m_storage->m_last = m_prev;
if (m_prev)
m_prev->m_next = m_next;
if (m_next)
m_next->m_prev = m_prev;
m_prev = nullptr;
m_next = nullptr;
m_storage = nullptr;
}
inline bool IntrusiveListNode::is_in_list() const
{
return m_storage != nullptr;
}
}
using AK::IntrusiveList;
using AK::IntrusiveListNode;