serenity/AK/FixedPoint.h
Timothy Flynn 5063e218af AK: Move the AK::FixedPoint formatter to FixedPoint.h
This does not need to be defined in Format.h. This causes FixedPoint.h
to be included everywhere. This is particularly going to be an issue
when trying to include <CoreServices/CoreServices.h> on macOS. The macOS
SDK defines its own FixedPoint structure which will conflict with ours.
2023-01-19 11:29:48 +00:00

434 lines
12 KiB
C++

/*
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/IntegralMath.h>
#include <AK/NumericLimits.h>
#include <AK/Types.h>
#ifndef KERNEL
# include <AK/Math.h>
#endif
namespace AK {
// FIXME: this always uses round to nearest break-tie to even
// FIXME: use the Integral concept to constrain Underlying
template<size_t precision, typename Underlying>
class FixedPoint {
using This = FixedPoint<precision, Underlying>;
constexpr static Underlying radix_mask = (static_cast<Underlying>(1) << precision) - 1;
template<size_t P, typename U>
friend class FixedPoint;
public:
constexpr FixedPoint() = default;
template<Integral I>
constexpr FixedPoint(I value)
: m_value(static_cast<Underlying>(value) << precision)
{
}
template<FloatingPoint F>
constexpr FixedPoint(F value)
: m_value(static_cast<Underlying>(value * (static_cast<Underlying>(1) << precision)))
{
}
template<size_t P, typename U>
explicit constexpr FixedPoint(FixedPoint<P, U> const& other)
: m_value(other.template cast_to<precision, Underlying>().m_value)
{
}
#ifndef KERNEL
template<FloatingPoint F>
explicit ALWAYS_INLINE operator F() const
{
return (F)m_value * pow<F>(0.5, precision);
}
#endif
template<Integral I>
explicit constexpr operator I() const
{
I value = m_value >> precision;
// fract(m_value) >= .5?
if (m_value & (1u << (precision - 1))) {
// fract(m_value) > .5?
if (m_value & (radix_mask >> 2u)) {
// yes: round "up";
value += (m_value > 0 ? 1 : -1);
} else {
// no: round to even;
value += value & 1;
}
}
return value;
}
constexpr Underlying raw() const
{
return m_value;
}
constexpr Underlying& raw()
{
return m_value;
}
constexpr This fract() const
{
return create_raw(m_value & radix_mask);
}
constexpr This round() const
{
return This { static_cast<Underlying>(*this) };
}
constexpr This floor() const
{
return create_raw(m_value & ~radix_mask);
}
constexpr This ceil() const
{
return create_raw((m_value & ~radix_mask)
+ (m_value & radix_mask ? 1 << precision : 0));
}
constexpr This trunk() const
{
return create_raw((m_value & ~radix_mask)
+ ((m_value & radix_mask)
? (m_value > 0 ? 0 : (1 << precision))
: 0));
}
constexpr Underlying lround() const { return static_cast<Underlying>(*this); }
constexpr Underlying lfloor() const { return m_value >> precision; }
constexpr Underlying lceil() const
{
return (m_value >> precision)
+ (m_value & radix_mask ? 1 : 0);
}
constexpr Underlying ltrunk() const
{
return (m_value >> precision)
+ ((m_value & radix_mask)
? m_value > 0 ? 0 : 1
: 0);
}
// http://www.claysturner.com/dsp/BinaryLogarithm.pdf
constexpr This log2() const
{
// 0.5
This b = create_raw(1 << (precision - 1));
This y = 0;
This x = *this;
// FIXME: There's no negative infinity.
if (x.raw() <= 0)
return create_raw(NumericLimits<Underlying>::min());
if (x != 1) {
i32 shift_amount = AK::log2<Underlying>(x.raw()) - precision;
if (shift_amount > 0)
x >>= shift_amount;
else
x <<= -shift_amount;
y += shift_amount;
}
for (size_t i = 0; i < precision; ++i) {
x *= x;
if (x >= 2) {
x >>= 1;
y += b;
}
b >>= 1;
}
return y;
}
constexpr bool signbit() const
requires(IsSigned<Underlying>)
{
return m_value >> (sizeof(Underlying) * 8 - 1);
}
constexpr This operator-() const
requires(IsSigned<Underlying>)
{
return create_raw(-m_value);
}
constexpr This operator+(This const& other) const
{
return create_raw(m_value + other.m_value);
}
constexpr This operator-(This const& other) const
{
return create_raw(m_value - other.m_value);
}
constexpr This operator*(This const& other) const
{
// FIXME: Potential Overflow, although result could be represented accurately
Underlying value = m_value * other.raw();
This ret {};
ret.raw() = value >> precision;
// fract(value) >= .5?
if (value & (1u << (precision - 1))) {
// fract(value) > .5?
if (value & (radix_mask >> 2u)) {
// yes: round up;
ret.raw() += (value > 0 ? 1 : -1);
} else {
// no: round to even (aka unset last sigificant bit);
ret.raw() += m_value & 1;
}
}
return ret;
}
constexpr This operator/(This const& other) const
{
// FIXME: Better rounding?
return create_raw((m_value / other.m_value) << (precision));
}
template<Integral I>
constexpr This operator+(I other) const
{
return create_raw(m_value + (other << precision));
}
template<Integral I>
constexpr This operator-(I other) const
{
return create_raw(m_value - (other << precision));
}
template<Integral I>
constexpr This operator*(I other) const
{
return create_raw(m_value * other);
}
template<Integral I>
constexpr This operator/(I other) const
{
return create_raw(m_value / other);
}
template<Integral I>
constexpr This operator>>(I other) const
{
return create_raw(m_value >> other);
}
template<Integral I>
constexpr This operator<<(I other) const
{
return create_raw(m_value << other);
}
This& operator+=(This const& other)
{
m_value += other.raw();
return *this;
}
This& operator-=(This const& other)
{
m_value -= other.raw();
return *this;
}
This& operator*=(This const& other)
{
Underlying value = m_value * other.raw();
m_value = value >> precision;
// fract(value) >= .5?
if (value & (1u << (precision - 1))) {
// fract(value) > .5?
if (value & (radix_mask >> 2u)) {
// yes: round up;
m_value += (value > 0 ? 1 : -1);
} else {
// no: round to even (aka unset last sigificant bit);
m_value += m_value & 1;
}
}
return *this;
}
This& operator/=(This const& other)
{
// FIXME: See above
m_value /= other.raw();
m_value <<= precision;
return *this;
}
template<Integral I>
This& operator+=(I other)
{
m_value += other << precision;
return *this;
}
template<Integral I>
This& operator-=(I other)
{
m_value -= other << precision;
return *this;
}
template<Integral I>
This& operator*=(I other)
{
m_value *= other;
return *this;
}
template<Integral I>
This& operator/=(I other)
{
m_value /= other;
return *this;
}
template<Integral I>
This& operator>>=(I other)
{
m_value >>= other;
return *this;
}
template<Integral I>
This& operator<<=(I other)
{
m_value <<= other;
return *this;
}
bool operator==(This const& other) const { return raw() == other.raw(); }
bool operator!=(This const& other) const { return raw() != other.raw(); }
bool operator>(This const& other) const { return raw() > other.raw(); }
bool operator>=(This const& other) const { return raw() >= other.raw(); }
bool operator<(This const& other) const { return raw() < other.raw(); }
bool operator<=(This const& other) const { return raw() <= other.raw(); }
// FIXE: There are probably better ways to do these
template<Integral I>
bool operator==(I other) const
{
return m_value >> precision == other && !(m_value & radix_mask);
}
template<Integral I>
bool operator!=(I other) const
{
return (m_value >> precision) != other || m_value & radix_mask;
}
template<Integral I>
bool operator>(I other) const
{
return !(*this <= other);
}
template<Integral I>
bool operator>=(I other) const
{
return !(*this < other);
}
template<Integral I>
bool operator<(I other) const
{
return (m_value >> precision) < other || m_value < (other << precision);
}
template<Integral I>
bool operator<=(I other) const
{
return *this < other || *this == other;
}
// Casting from a float should be faster than casting to a float
template<FloatingPoint F>
bool operator==(F other) const { return *this == (This)other; }
template<FloatingPoint F>
bool operator!=(F other) const { return *this != (This)other; }
template<FloatingPoint F>
bool operator>(F other) const { return *this > (This)other; }
template<FloatingPoint F>
bool operator>=(F other) const { return *this >= (This)other; }
template<FloatingPoint F>
bool operator<(F other) const { return *this < (This)other; }
template<FloatingPoint F>
bool operator<=(F other) const { return *this <= (This)other; }
template<size_t P, typename U>
operator FixedPoint<P, U>() const
{
return cast_to<P, U>();
}
private:
template<size_t P, typename U>
constexpr FixedPoint<P, U> cast_to() const
{
U raw_value = static_cast<U>(m_value >> precision) << P;
if constexpr (precision > P)
raw_value |= (m_value & radix_mask) >> (precision - P);
else if constexpr (precision < P)
raw_value |= static_cast<U>(m_value & radix_mask) << (P - precision);
else
raw_value |= m_value & radix_mask;
return FixedPoint<P, U>::create_raw(raw_value);
}
static This create_raw(Underlying value)
{
This t {};
t.raw() = value;
return t;
}
Underlying m_value;
};
template<size_t precision, typename Underlying>
struct Formatter<FixedPoint<precision, Underlying>> : StandardFormatter {
Formatter() = default;
explicit Formatter(StandardFormatter formatter)
: StandardFormatter(formatter)
{
}
ErrorOr<void> format(FormatBuilder& builder, FixedPoint<precision, Underlying> value)
{
u8 base;
bool upper_case;
FormatBuilder::RealNumberDisplayMode real_number_display_mode = FormatBuilder::RealNumberDisplayMode::General;
if (m_mode == Mode::Default || m_mode == Mode::FixedPoint) {
base = 10;
upper_case = false;
if (m_mode == Mode::FixedPoint)
real_number_display_mode = FormatBuilder::RealNumberDisplayMode::FixedPoint;
} else if (m_mode == Mode::Hexfloat) {
base = 16;
upper_case = false;
} else if (m_mode == Mode::HexfloatUppercase) {
base = 16;
upper_case = true;
} else {
VERIFY_NOT_REACHED();
}
m_width = m_width.value_or(0);
m_precision = m_precision.value_or(6);
i64 integer = value.ltrunk();
constexpr u64 one = static_cast<Underlying>(1) << precision;
u64 fraction_raw = value.raw() & (one - 1);
return builder.put_fixed_point(integer, fraction_raw, one, base, upper_case, m_zero_pad, m_align, m_width.value(), m_precision.value(), m_fill, m_sign_mode, real_number_display_mode);
}
};
}
#if USING_AK_GLOBALLY
using AK::FixedPoint;
#endif