serenity/Kernel/Scheduler.cpp
Gunnar Beutner 3c2a6a25da Kernel: Don't finalize a thread while it still has code running
After marking a thread for death we might end up finalizing the thread
while it still has code to run, e.g. via:

Thread::block -> Thread::dispatch_one_pending_signal
-> Thread::dispatch_signal -> Process::terminate_due_to_signal
-> Process::die -> Process::kill_all_threads -> Thread::set_should_die

This marks the thread for death. It isn't destroyed at this point
though.

The scheduler then gets invoked via:

Thread::block -> Thread::relock_process

At that point we still have a registered blocker on the stack frame
which belongs to Thread::block. Thread::relock_process drops the
critical section which allows the scheduler to run.

When the thread is then scheduled out the scheduler sets the thread
state to Thread::Dying which allows the finalizer to destroy the Thread
object and its associated resources including the kernel stack.

This probably also affects objects other than blockers which rely
on their destructor to be run, however the problem was most noticible
because blockers are allocated on the stack of the dying thread and
cause an access violation when another thread touches the blocker
which belonged to the now-dead thread.

Fixes #7823.
2021-06-06 15:58:48 +02:00

599 lines
20 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <Kernel/Debug.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
// Remove this once SMP is stable and can be enabled by default
#define SCHEDULE_ON_ALL_PROCESSORS 0
namespace Kernel {
class SchedulerPerProcessorData {
AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);
public:
SchedulerPerProcessorData() = default;
WeakPtr<Thread> m_pending_beneficiary;
const char* m_pending_donate_reason { nullptr };
bool m_in_scheduler { true };
};
RecursiveSpinLock g_scheduler_lock;
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 4ms (assuming 250 ticks/second)
if (thread.is_idle_thread())
return 1;
return 2;
}
READONLY_AFTER_INIT Thread* g_finalizer;
READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
READONLY_AFTER_INIT static Process* s_colonel_process;
struct ThreadReadyQueue {
IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_ready_queue_node> thread_list;
};
static SpinLock<u8> g_ready_queues_lock;
static u32 g_ready_queues_mask;
static constexpr u32 g_ready_queue_buckets = sizeof(g_ready_queues_mask) * 8;
READONLY_AFTER_INIT static ThreadReadyQueue* g_ready_queues; // g_ready_queue_buckets entries
static void dump_thread_list();
static inline u32 thread_priority_to_priority_index(u32 thread_priority)
{
// Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX
// to a index into g_ready_queues where 0 is the highest priority bucket
VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
static_assert(thread_priority_count > 0);
auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (g_ready_queue_buckets - 1);
VERIFY(priority_bucket < g_ready_queue_buckets);
return priority_bucket;
}
Thread& Scheduler::pull_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::current().id();
ScopedSpinLock lock(g_ready_queues_lock);
auto priority_mask = g_ready_queues_mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = g_ready_queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
// We need to mark it active here so that this thread won't be
// scheduled on another core if it were to be queued before actually
// switching to it.
// FIXME: Figure out a better way maybe?
thread.set_active(true);
return thread;
}
priority_mask &= ~(1u << priority);
}
return *Processor::idle_thread();
}
bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
{
if (thread.is_idle_thread())
return true;
ScopedSpinLock lock(g_ready_queues_lock);
auto priority = thread.m_runnable_priority;
if (priority < 0) {
VERIFY(!thread.m_ready_queue_node.is_in_list());
return false;
}
if (check_affinity && !(thread.affinity() & (1 << Processor::current().id())))
return false;
VERIFY(g_ready_queues_mask & (1u << priority));
auto& ready_queue = g_ready_queues[priority];
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
return true;
}
void Scheduler::queue_runnable_thread(Thread& thread)
{
VERIFY(g_scheduler_lock.own_lock());
if (thread.is_idle_thread())
return;
auto priority = thread_priority_to_priority_index(thread.priority());
ScopedSpinLock lock(g_ready_queues_lock);
VERIFY(thread.m_runnable_priority < 0);
thread.m_runnable_priority = (int)priority;
VERIFY(!thread.m_ready_queue_node.is_in_list());
auto& ready_queue = g_ready_queues[priority];
bool was_empty = ready_queue.thread_list.is_empty();
ready_queue.thread_list.append(thread);
if (was_empty)
g_ready_queues_mask |= (1u << priority);
}
UNMAP_AFTER_INIT void Scheduler::start()
{
VERIFY_INTERRUPTS_DISABLED();
// We need to acquire our scheduler lock, which will be released
// by the idle thread once control transferred there
g_scheduler_lock.lock();
auto& processor = Processor::current();
processor.set_scheduler_data(*new SchedulerPerProcessorData());
VERIFY(processor.is_initialized());
auto& idle_thread = *Processor::idle_thread();
VERIFY(processor.current_thread() == &idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
processor.init_context(idle_thread, false);
idle_thread.set_state(Thread::Running);
VERIFY(idle_thread.affinity() == (1u << processor.get_id()));
processor.initialize_context_switching(idle_thread);
VERIFY_NOT_REACHED();
}
bool Scheduler::pick_next()
{
VERIFY_INTERRUPTS_DISABLED();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& scheduler_data = Processor::current().get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ScopedSpinLock lock(g_scheduler_lock);
if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
dump_thread_list();
}
auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref();
if (pending_beneficiary && dequeue_runnable_thread(*pending_beneficiary, true)) {
// The thread we're supposed to donate to still exists and we can
const char* reason = scheduler_data.m_pending_donate_reason;
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
dbgln_if(SCHEDULER_DEBUG, "Processing pending donate to {} reason={}", *pending_beneficiary, reason);
return donate_to_and_switch(pending_beneficiary.ptr(), reason);
}
// Either we're not donating or the beneficiary disappeared.
// Either way clear any pending information
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
auto& thread_to_schedule = pull_next_runnable_thread();
if constexpr (SCHEDULER_DEBUG) {
dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}",
Processor::id(),
thread_to_schedule,
thread_to_schedule.tss().cs, thread_to_schedule.tss().eip);
}
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule));
return context_switch(&thread_to_schedule);
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
// Clear any pending beneficiary
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
auto current_thread = Thread::current();
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", proc.get_id(), *current_thread, proc.in_irq());
VERIFY(current_thread != nullptr);
if (proc.in_irq() || proc.in_critical()) {
// If we're handling an IRQ we can't switch context, or we're in
// a critical section where we don't want to switch contexts, then
// delay until exiting the trap or critical section
proc.invoke_scheduler_async();
return false;
}
if (!Scheduler::pick_next())
return false;
if constexpr (SCHEDULER_DEBUG)
dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::id(), *current_thread, Processor::current().in_irq());
return true;
}
bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason)
{
VERIFY(g_scheduler_lock.own_lock());
auto& proc = Processor::current();
VERIFY(proc.in_critical() == 1);
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.get_id(), ticks_to_donate, *beneficiary, reason);
beneficiary->set_ticks_left(ticks_to_donate);
return Scheduler::context_switch(beneficiary);
}
bool Scheduler::donate_to(RefPtr<Thread>& beneficiary, const char* reason)
{
VERIFY(beneficiary);
if (beneficiary == Thread::current())
return Scheduler::yield();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
VERIFY(!proc.in_irq());
if (proc.in_critical() > 1) {
scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary
scheduler_data.m_pending_donate_reason = reason;
proc.invoke_scheduler_async();
return false;
}
ScopedSpinLock lock(g_scheduler_lock);
// "Leave" the critical section before switching context. Since we
// still hold the scheduler lock, we're not actually leaving it.
// Processor::switch_context expects Processor::in_critical() to be 1
critical.leave();
donate_to_and_switch(beneficiary, reason);
return false;
}
bool Scheduler::context_switch(Thread* thread)
{
if (s_mm_lock.own_lock()) {
PANIC("In context switch while holding s_mm_lock");
}
thread->did_schedule();
auto from_thread = Thread::current();
if (from_thread == thread)
return false;
if (from_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (from_thread->state() == Thread::Running)
from_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip);
#endif
}
auto& proc = Processor::current();
if (!thread->is_initialized()) {
proc.init_context(*thread, false);
thread->set_initialized(true);
}
thread->set_state(Thread::Running);
PerformanceManager::add_context_switch_perf_event(*from_thread, *thread);
proc.switch_context(from_thread, thread);
// NOTE: from_thread at this point reflects the thread we were
// switched from, and thread reflects Thread::current()
enter_current(*from_thread, false);
VERIFY(thread == Thread::current());
#if ARCH(I386)
if (thread->process().is_user_process()) {
auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags);
if (iopl != 0) {
PANIC("Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl);
}
}
#endif
return true;
}
void Scheduler::enter_current(Thread& prev_thread, bool is_first)
{
VERIFY(g_scheduler_lock.own_lock());
prev_thread.set_active(false);
if (prev_thread.state() == Thread::Dying) {
// If the thread we switched from is marked as dying, then notify
// the finalizer. Note that as soon as we leave the scheduler lock
// the finalizer may free from_thread!
notify_finalizer();
} else if (!is_first) {
// Check if we have any signals we should deliver (even if we don't
// end up switching to another thread).
auto current_thread = Thread::current();
if (!current_thread->is_in_block() && current_thread->previous_mode() != Thread::PreviousMode::KernelMode) {
ScopedSpinLock lock(current_thread->get_lock());
if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) {
current_thread->dispatch_one_pending_signal();
}
}
}
}
void Scheduler::leave_on_first_switch(u32 flags)
{
// This is called when a thread is switched into for the first time.
// At this point, enter_current has already be called, but because
// Scheduler::context_switch is not in the call stack we need to
// clean up and release locks manually here
g_scheduler_lock.unlock(flags);
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
}
void Scheduler::prepare_after_exec()
{
// This is called after exec() when doing a context "switch" into
// the new process. This is called from Processor::assume_context
VERIFY(g_scheduler_lock.own_lock());
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
void Scheduler::prepare_for_idle_loop()
{
// This is called when the CPU finished setting up the idle loop
// and is about to run it. We need to acquire he scheduler lock
VERIFY(!g_scheduler_lock.own_lock());
g_scheduler_lock.lock();
auto& scheduler_data = Processor::current().get_scheduler_data();
VERIFY(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
Process* Scheduler::colonel()
{
VERIFY(s_colonel_process);
return s_colonel_process;
}
UNMAP_AFTER_INIT void Scheduler::initialize()
{
VERIFY(&Processor::current() != nullptr); // sanity check
RefPtr<Thread> idle_thread;
g_finalizer_wait_queue = new WaitQueue;
g_ready_queues = new ThreadReadyQueue[g_ready_queue_buckets];
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref();
VERIFY(s_colonel_process);
VERIFY(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(StringView("idle thread #0"));
set_idle_thread(idle_thread);
}
UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread)
{
idle_thread->set_idle_thread();
Processor::current().set_idle_thread(*idle_thread);
Processor::current().set_current_thread(*idle_thread);
}
UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
VERIFY(cpu != 0);
// This function is called on the bsp, but creates an idle thread for another AP
VERIFY(Processor::is_bootstrap_processor());
VERIFY(s_colonel_process);
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::formatted("idle thread #{}", cpu), 1 << cpu, false);
VERIFY(idle_thread);
return idle_thread;
}
void Scheduler::timer_tick(const RegisterState& regs)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current().in_irq());
auto current_thread = Processor::current_thread();
if (!current_thread)
return;
// Sanity checks
VERIFY(current_thread->current_trap());
VERIFY(current_thread->current_trap()->regs == &regs);
#if !SCHEDULE_ON_ALL_PROCESSORS
if (!Processor::is_bootstrap_processor())
return; // TODO: This prevents scheduling on other CPUs!
#endif
if (current_thread->tick())
return;
VERIFY_INTERRUPTS_DISABLED();
VERIFY(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
VERIFY_INTERRUPTS_DISABLED();
auto& proc = Processor::current();
VERIFY(!proc.in_irq());
// Since this function is called when leaving critical sections (such
// as a SpinLock), we need to check if we're not already doing this
// to prevent recursion
if (!proc.get_scheduler_data().m_in_scheduler)
pick_next();
}
void Scheduler::yield_from_critical()
{
auto& proc = Processor::current();
VERIFY(proc.in_critical());
VERIFY(!proc.in_irq());
yield(); // Flag a context switch
u32 prev_flags;
u32 prev_crit = Processor::current().clear_critical(prev_flags, false);
// Note, we may now be on a different CPU!
Processor::current().restore_critical(prev_crit, prev_flags);
}
void Scheduler::notify_finalizer()
{
if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
g_finalizer_wait_queue->wake_all();
}
void Scheduler::idle_loop(void*)
{
auto& proc = Processor::current();
dbgln("Scheduler[{}]: idle loop running", proc.get_id());
VERIFY(are_interrupts_enabled());
for (;;) {
proc.idle_begin();
asm("hlt");
proc.idle_end();
VERIFY_INTERRUPTS_ENABLED();
#if SCHEDULE_ON_ALL_PROCESSORS
yield();
#else
if (Processor::current().id() == 0)
yield();
#endif
}
}
void Scheduler::dump_scheduler_state()
{
dump_thread_list();
}
void dump_thread_list()
{
dbgln("Scheduler thread list for processor {}:", Processor::id());
auto get_cs = [](Thread& thread) -> u16 {
if (!thread.current_trap())
return thread.tss().cs;
return thread.get_register_dump_from_stack().cs;
};
auto get_eip = [](Thread& thread) -> u32 {
if (!thread.current_trap())
return thread.tss().eip;
return thread.get_register_dump_from_stack().eip;
};
Thread::for_each([&](Thread& thread) {
switch (thread.state()) {
case Thread::Dying:
dmesgln(" {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})",
thread.state_string(),
thread,
get_cs(thread),
get_eip(thread),
thread.is_finalizable(),
thread.times_scheduled());
break;
default:
dmesgln(" {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})",
thread.state_string(),
thread.priority(),
thread,
get_cs(thread),
get_eip(thread),
thread.times_scheduled());
break;
}
});
}
}